This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of a linear Hilbert space functional at zero is zero. Remark in Beran p. 99. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | |- T e. LinFn |
|
| Assertion | lnfn0i | |- ( T ` 0h ) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | |- T e. LinFn |
|
| 2 | ax-hv0cl | |- 0h e. ~H |
|
| 3 | 1 | lnfnfi | |- T : ~H --> CC |
| 4 | 3 | ffvelcdmi | |- ( 0h e. ~H -> ( T ` 0h ) e. CC ) |
| 5 | 2 4 | ax-mp | |- ( T ` 0h ) e. CC |
| 6 | 5 5 | pncan3oi | |- ( ( ( T ` 0h ) + ( T ` 0h ) ) - ( T ` 0h ) ) = ( T ` 0h ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | 1 | lnfnli | |- ( ( 1 e. CC /\ 0h e. ~H /\ 0h e. ~H ) -> ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) ) |
| 9 | 7 2 2 8 | mp3an | |- ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) |
| 10 | 7 2 | hvmulcli | |- ( 1 .h 0h ) e. ~H |
| 11 | ax-hvaddid | |- ( ( 1 .h 0h ) e. ~H -> ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) ) |
|
| 12 | 10 11 | ax-mp | |- ( ( 1 .h 0h ) +h 0h ) = ( 1 .h 0h ) |
| 13 | ax-hvmulid | |- ( 0h e. ~H -> ( 1 .h 0h ) = 0h ) |
|
| 14 | 2 13 | ax-mp | |- ( 1 .h 0h ) = 0h |
| 15 | 12 14 | eqtri | |- ( ( 1 .h 0h ) +h 0h ) = 0h |
| 16 | 15 | fveq2i | |- ( T ` ( ( 1 .h 0h ) +h 0h ) ) = ( T ` 0h ) |
| 17 | 9 16 | eqtr3i | |- ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) = ( T ` 0h ) |
| 18 | 5 | mullidi | |- ( 1 x. ( T ` 0h ) ) = ( T ` 0h ) |
| 19 | 18 | oveq1i | |- ( ( 1 x. ( T ` 0h ) ) + ( T ` 0h ) ) = ( ( T ` 0h ) + ( T ` 0h ) ) |
| 20 | 17 19 | eqtr3i | |- ( T ` 0h ) = ( ( T ` 0h ) + ( T ` 0h ) ) |
| 21 | 20 | oveq1i | |- ( ( T ` 0h ) - ( T ` 0h ) ) = ( ( ( T ` 0h ) + ( T ` 0h ) ) - ( T ` 0h ) ) |
| 22 | 5 | subidi | |- ( ( T ` 0h ) - ( T ` 0h ) ) = 0 |
| 23 | 21 22 | eqtr3i | |- ( ( ( T ` 0h ) + ( T ` 0h ) ) - ( T ` 0h ) ) = 0 |
| 24 | 6 23 | eqtr3i | |- ( T ` 0h ) = 0 |