This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmblolbi.1 | |- X = ( BaseSet ` U ) |
|
| nmblolbi.4 | |- L = ( normCV ` U ) |
||
| nmblolbi.5 | |- M = ( normCV ` W ) |
||
| nmblolbi.6 | |- N = ( U normOpOLD W ) |
||
| nmblolbi.7 | |- B = ( U BLnOp W ) |
||
| nmblolbi.u | |- U e. NrmCVec |
||
| nmblolbi.w | |- W e. NrmCVec |
||
| nmblolbii.b | |- T e. B |
||
| Assertion | nmblolbii | |- ( A e. X -> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmblolbi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmblolbi.4 | |- L = ( normCV ` U ) |
|
| 3 | nmblolbi.5 | |- M = ( normCV ` W ) |
|
| 4 | nmblolbi.6 | |- N = ( U normOpOLD W ) |
|
| 5 | nmblolbi.7 | |- B = ( U BLnOp W ) |
|
| 6 | nmblolbi.u | |- U e. NrmCVec |
|
| 7 | nmblolbi.w | |- W e. NrmCVec |
|
| 8 | nmblolbii.b | |- T e. B |
|
| 9 | fveq2 | |- ( A = ( 0vec ` U ) -> ( T ` A ) = ( T ` ( 0vec ` U ) ) ) |
|
| 10 | 9 | fveq2d | |- ( A = ( 0vec ` U ) -> ( M ` ( T ` A ) ) = ( M ` ( T ` ( 0vec ` U ) ) ) ) |
| 11 | fveq2 | |- ( A = ( 0vec ` U ) -> ( L ` A ) = ( L ` ( 0vec ` U ) ) ) |
|
| 12 | 11 | oveq2d | |- ( A = ( 0vec ` U ) -> ( ( N ` T ) x. ( L ` A ) ) = ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) ) |
| 13 | 10 12 | breq12d | |- ( A = ( 0vec ` U ) -> ( ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) <-> ( M ` ( T ` ( 0vec ` U ) ) ) <_ ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) ) ) |
| 14 | 1 2 | nvcl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( L ` A ) e. RR ) |
| 15 | 6 14 | mpan | |- ( A e. X -> ( L ` A ) e. RR ) |
| 16 | 15 | adantr | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` A ) e. RR ) |
| 17 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 18 | 1 17 2 | nvz | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( L ` A ) = 0 <-> A = ( 0vec ` U ) ) ) |
| 19 | 6 18 | mpan | |- ( A e. X -> ( ( L ` A ) = 0 <-> A = ( 0vec ` U ) ) ) |
| 20 | 19 | necon3bid | |- ( A e. X -> ( ( L ` A ) =/= 0 <-> A =/= ( 0vec ` U ) ) ) |
| 21 | 20 | biimpar | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` A ) =/= 0 ) |
| 22 | 16 21 | rereccld | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( 1 / ( L ` A ) ) e. RR ) |
| 23 | 1 17 2 | nvgt0 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( A =/= ( 0vec ` U ) <-> 0 < ( L ` A ) ) ) |
| 24 | 6 23 | mpan | |- ( A e. X -> ( A =/= ( 0vec ` U ) <-> 0 < ( L ` A ) ) ) |
| 25 | 24 | biimpa | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> 0 < ( L ` A ) ) |
| 26 | 16 25 | recgt0d | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> 0 < ( 1 / ( L ` A ) ) ) |
| 27 | 0re | |- 0 e. RR |
|
| 28 | ltle | |- ( ( 0 e. RR /\ ( 1 / ( L ` A ) ) e. RR ) -> ( 0 < ( 1 / ( L ` A ) ) -> 0 <_ ( 1 / ( L ` A ) ) ) ) |
|
| 29 | 27 22 28 | sylancr | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( 0 < ( 1 / ( L ` A ) ) -> 0 <_ ( 1 / ( L ` A ) ) ) ) |
| 30 | 26 29 | mpd | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> 0 <_ ( 1 / ( L ` A ) ) ) |
| 31 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 32 | 1 31 5 | blof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> ( BaseSet ` W ) ) |
| 33 | 6 7 8 32 | mp3an | |- T : X --> ( BaseSet ` W ) |
| 34 | 33 | ffvelcdmi | |- ( A e. X -> ( T ` A ) e. ( BaseSet ` W ) ) |
| 35 | 34 | adantr | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( T ` A ) e. ( BaseSet ` W ) ) |
| 36 | eqid | |- ( .sOLD ` W ) = ( .sOLD ` W ) |
|
| 37 | 31 36 3 | nvsge0 | |- ( ( W e. NrmCVec /\ ( ( 1 / ( L ` A ) ) e. RR /\ 0 <_ ( 1 / ( L ` A ) ) ) /\ ( T ` A ) e. ( BaseSet ` W ) ) -> ( M ` ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) = ( ( 1 / ( L ` A ) ) x. ( M ` ( T ` A ) ) ) ) |
| 38 | 7 37 | mp3an1 | |- ( ( ( ( 1 / ( L ` A ) ) e. RR /\ 0 <_ ( 1 / ( L ` A ) ) ) /\ ( T ` A ) e. ( BaseSet ` W ) ) -> ( M ` ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) = ( ( 1 / ( L ` A ) ) x. ( M ` ( T ` A ) ) ) ) |
| 39 | 22 30 35 38 | syl21anc | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) = ( ( 1 / ( L ` A ) ) x. ( M ` ( T ` A ) ) ) ) |
| 40 | 22 | recnd | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( 1 / ( L ` A ) ) e. CC ) |
| 41 | simpl | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> A e. X ) |
|
| 42 | eqid | |- ( U LnOp W ) = ( U LnOp W ) |
|
| 43 | 42 5 | bloln | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T e. ( U LnOp W ) ) |
| 44 | 6 7 8 43 | mp3an | |- T e. ( U LnOp W ) |
| 45 | 6 7 44 | 3pm3.2i | |- ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) |
| 46 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 47 | 1 46 36 42 | lnomul | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) /\ ( ( 1 / ( L ` A ) ) e. CC /\ A e. X ) ) -> ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) |
| 48 | 45 47 | mpan | |- ( ( ( 1 / ( L ` A ) ) e. CC /\ A e. X ) -> ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) |
| 49 | 40 41 48 | syl2anc | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) |
| 50 | 49 | fveq2d | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) = ( M ` ( ( 1 / ( L ` A ) ) ( .sOLD ` W ) ( T ` A ) ) ) ) |
| 51 | 31 3 | nvcl | |- ( ( W e. NrmCVec /\ ( T ` A ) e. ( BaseSet ` W ) ) -> ( M ` ( T ` A ) ) e. RR ) |
| 52 | 7 34 51 | sylancr | |- ( A e. X -> ( M ` ( T ` A ) ) e. RR ) |
| 53 | 52 | adantr | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` A ) ) e. RR ) |
| 54 | 53 | recnd | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` A ) ) e. CC ) |
| 55 | 16 | recnd | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` A ) e. CC ) |
| 56 | 54 55 21 | divrec2d | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( M ` ( T ` A ) ) / ( L ` A ) ) = ( ( 1 / ( L ` A ) ) x. ( M ` ( T ` A ) ) ) ) |
| 57 | 39 50 56 | 3eqtr4rd | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( M ` ( T ` A ) ) / ( L ` A ) ) = ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) ) |
| 58 | 1 46 | nvscl | |- ( ( U e. NrmCVec /\ ( 1 / ( L ` A ) ) e. CC /\ A e. X ) -> ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) |
| 59 | 6 58 | mp3an1 | |- ( ( ( 1 / ( L ` A ) ) e. CC /\ A e. X ) -> ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) |
| 60 | 59 | ancoms | |- ( ( A e. X /\ ( 1 / ( L ` A ) ) e. CC ) -> ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) |
| 61 | 40 60 | syldan | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) |
| 62 | 1 2 | nvcl | |- ( ( U e. NrmCVec /\ ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) e. RR ) |
| 63 | 6 61 62 | sylancr | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) e. RR ) |
| 64 | 1 46 17 2 | nv1 | |- ( ( U e. NrmCVec /\ A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = 1 ) |
| 65 | 6 64 | mp3an1 | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = 1 ) |
| 66 | eqle | |- ( ( ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) e. RR /\ ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) = 1 ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) <_ 1 ) |
|
| 67 | 63 65 66 | syl2anc | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) <_ 1 ) |
| 68 | 6 7 33 | 3pm3.2i | |- ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> ( BaseSet ` W ) ) |
| 69 | 1 31 2 3 4 | nmoolb | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> ( BaseSet ` W ) ) /\ ( ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X /\ ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) <_ 1 ) ) -> ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) <_ ( N ` T ) ) |
| 70 | 68 69 | mpan | |- ( ( ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) e. X /\ ( L ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) <_ 1 ) -> ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) <_ ( N ` T ) ) |
| 71 | 61 67 70 | syl2anc | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` ( ( 1 / ( L ` A ) ) ( .sOLD ` U ) A ) ) ) <_ ( N ` T ) ) |
| 72 | 57 71 | eqbrtrd | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( M ` ( T ` A ) ) / ( L ` A ) ) <_ ( N ` T ) ) |
| 73 | 1 31 4 5 | nmblore | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> ( N ` T ) e. RR ) |
| 74 | 6 7 8 73 | mp3an | |- ( N ` T ) e. RR |
| 75 | 74 | a1i | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( N ` T ) e. RR ) |
| 76 | ledivmul2 | |- ( ( ( M ` ( T ` A ) ) e. RR /\ ( N ` T ) e. RR /\ ( ( L ` A ) e. RR /\ 0 < ( L ` A ) ) ) -> ( ( ( M ` ( T ` A ) ) / ( L ` A ) ) <_ ( N ` T ) <-> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) ) |
|
| 77 | 53 75 16 25 76 | syl112anc | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( ( ( M ` ( T ` A ) ) / ( L ` A ) ) <_ ( N ` T ) <-> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) ) |
| 78 | 72 77 | mpbid | |- ( ( A e. X /\ A =/= ( 0vec ` U ) ) -> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) |
| 79 | 0le0 | |- 0 <_ 0 |
|
| 80 | eqid | |- ( 0vec ` W ) = ( 0vec ` W ) |
|
| 81 | 1 31 17 80 42 | lno0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. ( U LnOp W ) ) -> ( T ` ( 0vec ` U ) ) = ( 0vec ` W ) ) |
| 82 | 6 7 44 81 | mp3an | |- ( T ` ( 0vec ` U ) ) = ( 0vec ` W ) |
| 83 | 82 | fveq2i | |- ( M ` ( T ` ( 0vec ` U ) ) ) = ( M ` ( 0vec ` W ) ) |
| 84 | 80 3 | nvz0 | |- ( W e. NrmCVec -> ( M ` ( 0vec ` W ) ) = 0 ) |
| 85 | 7 84 | ax-mp | |- ( M ` ( 0vec ` W ) ) = 0 |
| 86 | 83 85 | eqtri | |- ( M ` ( T ` ( 0vec ` U ) ) ) = 0 |
| 87 | 17 2 | nvz0 | |- ( U e. NrmCVec -> ( L ` ( 0vec ` U ) ) = 0 ) |
| 88 | 6 87 | ax-mp | |- ( L ` ( 0vec ` U ) ) = 0 |
| 89 | 88 | oveq2i | |- ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) = ( ( N ` T ) x. 0 ) |
| 90 | 74 | recni | |- ( N ` T ) e. CC |
| 91 | 90 | mul01i | |- ( ( N ` T ) x. 0 ) = 0 |
| 92 | 89 91 | eqtri | |- ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) = 0 |
| 93 | 79 86 92 | 3brtr4i | |- ( M ` ( T ` ( 0vec ` U ) ) ) <_ ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) |
| 94 | 93 | a1i | |- ( A e. X -> ( M ` ( T ` ( 0vec ` U ) ) ) <_ ( ( N ` T ) x. ( L ` ( 0vec ` U ) ) ) ) |
| 95 | 13 78 94 | pm2.61ne | |- ( A e. X -> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) |