This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmblolbi.1 | |- X = ( BaseSet ` U ) |
|
| nmblolbi.4 | |- L = ( normCV ` U ) |
||
| nmblolbi.5 | |- M = ( normCV ` W ) |
||
| nmblolbi.6 | |- N = ( U normOpOLD W ) |
||
| nmblolbi.7 | |- B = ( U BLnOp W ) |
||
| nmblolbi.u | |- U e. NrmCVec |
||
| nmblolbi.w | |- W e. NrmCVec |
||
| Assertion | nmblolbi | |- ( ( T e. B /\ A e. X ) -> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmblolbi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmblolbi.4 | |- L = ( normCV ` U ) |
|
| 3 | nmblolbi.5 | |- M = ( normCV ` W ) |
|
| 4 | nmblolbi.6 | |- N = ( U normOpOLD W ) |
|
| 5 | nmblolbi.7 | |- B = ( U BLnOp W ) |
|
| 6 | nmblolbi.u | |- U e. NrmCVec |
|
| 7 | nmblolbi.w | |- W e. NrmCVec |
|
| 8 | fveq1 | |- ( T = if ( T e. B , T , ( U 0op W ) ) -> ( T ` A ) = ( if ( T e. B , T , ( U 0op W ) ) ` A ) ) |
|
| 9 | 8 | fveq2d | |- ( T = if ( T e. B , T , ( U 0op W ) ) -> ( M ` ( T ` A ) ) = ( M ` ( if ( T e. B , T , ( U 0op W ) ) ` A ) ) ) |
| 10 | fveq2 | |- ( T = if ( T e. B , T , ( U 0op W ) ) -> ( N ` T ) = ( N ` if ( T e. B , T , ( U 0op W ) ) ) ) |
|
| 11 | 10 | oveq1d | |- ( T = if ( T e. B , T , ( U 0op W ) ) -> ( ( N ` T ) x. ( L ` A ) ) = ( ( N ` if ( T e. B , T , ( U 0op W ) ) ) x. ( L ` A ) ) ) |
| 12 | 9 11 | breq12d | |- ( T = if ( T e. B , T , ( U 0op W ) ) -> ( ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) <-> ( M ` ( if ( T e. B , T , ( U 0op W ) ) ` A ) ) <_ ( ( N ` if ( T e. B , T , ( U 0op W ) ) ) x. ( L ` A ) ) ) ) |
| 13 | 12 | imbi2d | |- ( T = if ( T e. B , T , ( U 0op W ) ) -> ( ( A e. X -> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) <-> ( A e. X -> ( M ` ( if ( T e. B , T , ( U 0op W ) ) ` A ) ) <_ ( ( N ` if ( T e. B , T , ( U 0op W ) ) ) x. ( L ` A ) ) ) ) ) |
| 14 | eqid | |- ( U 0op W ) = ( U 0op W ) |
|
| 15 | 14 5 | 0blo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( U 0op W ) e. B ) |
| 16 | 6 7 15 | mp2an | |- ( U 0op W ) e. B |
| 17 | 16 | elimel | |- if ( T e. B , T , ( U 0op W ) ) e. B |
| 18 | 1 2 3 4 5 6 7 17 | nmblolbii | |- ( A e. X -> ( M ` ( if ( T e. B , T , ( U 0op W ) ) ` A ) ) <_ ( ( N ` if ( T e. B , T , ( U 0op W ) ) ) x. ( L ` A ) ) ) |
| 19 | 13 18 | dedth | |- ( T e. B -> ( A e. X -> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) ) |
| 20 | 19 | imp | |- ( ( T e. B /\ A e. X ) -> ( M ` ( T ` A ) ) <_ ( ( N ` T ) x. ( L ` A ) ) ) |