This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a zero vector is zero. (Contributed by NM, 24-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvz0.5 | |- Z = ( 0vec ` U ) |
|
| nvz0.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvz0 | |- ( U e. NrmCVec -> ( N ` Z ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvz0.5 | |- Z = ( 0vec ` U ) |
|
| 2 | nvz0.6 | |- N = ( normCV ` U ) |
|
| 3 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 4 | 3 1 | nvzcl | |- ( U e. NrmCVec -> Z e. ( BaseSet ` U ) ) |
| 5 | 0re | |- 0 e. RR |
|
| 6 | 0le0 | |- 0 <_ 0 |
|
| 7 | 5 6 | pm3.2i | |- ( 0 e. RR /\ 0 <_ 0 ) |
| 8 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 9 | 3 8 2 | nvsge0 | |- ( ( U e. NrmCVec /\ ( 0 e. RR /\ 0 <_ 0 ) /\ Z e. ( BaseSet ` U ) ) -> ( N ` ( 0 ( .sOLD ` U ) Z ) ) = ( 0 x. ( N ` Z ) ) ) |
| 10 | 7 9 | mp3an2 | |- ( ( U e. NrmCVec /\ Z e. ( BaseSet ` U ) ) -> ( N ` ( 0 ( .sOLD ` U ) Z ) ) = ( 0 x. ( N ` Z ) ) ) |
| 11 | 4 10 | mpdan | |- ( U e. NrmCVec -> ( N ` ( 0 ( .sOLD ` U ) Z ) ) = ( 0 x. ( N ` Z ) ) ) |
| 12 | 3 8 1 | nv0 | |- ( ( U e. NrmCVec /\ Z e. ( BaseSet ` U ) ) -> ( 0 ( .sOLD ` U ) Z ) = Z ) |
| 13 | 4 12 | mpdan | |- ( U e. NrmCVec -> ( 0 ( .sOLD ` U ) Z ) = Z ) |
| 14 | 13 | fveq2d | |- ( U e. NrmCVec -> ( N ` ( 0 ( .sOLD ` U ) Z ) ) = ( N ` Z ) ) |
| 15 | 3 2 | nvcl | |- ( ( U e. NrmCVec /\ Z e. ( BaseSet ` U ) ) -> ( N ` Z ) e. RR ) |
| 16 | 15 | recnd | |- ( ( U e. NrmCVec /\ Z e. ( BaseSet ` U ) ) -> ( N ` Z ) e. CC ) |
| 17 | 4 16 | mpdan | |- ( U e. NrmCVec -> ( N ` Z ) e. CC ) |
| 18 | 17 | mul02d | |- ( U e. NrmCVec -> ( 0 x. ( N ` Z ) ) = 0 ) |
| 19 | 11 14 18 | 3eqtr3d | |- ( U e. NrmCVec -> ( N ` Z ) = 0 ) |