This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmblore.1 | |- X = ( BaseSet ` U ) |
|
| nmblore.2 | |- Y = ( BaseSet ` W ) |
||
| nmblore.3 | |- N = ( U normOpOLD W ) |
||
| nmblore.5 | |- B = ( U BLnOp W ) |
||
| Assertion | nmblore | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> ( N ` T ) e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmblore.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmblore.2 | |- Y = ( BaseSet ` W ) |
|
| 3 | nmblore.3 | |- N = ( U normOpOLD W ) |
|
| 4 | nmblore.5 | |- B = ( U BLnOp W ) |
|
| 5 | 1 2 4 | blof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> T : X --> Y ) |
| 6 | 1 2 3 | nmogtmnf | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> -oo < ( N ` T ) ) |
| 7 | 5 6 | syld3an3 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> -oo < ( N ` T ) ) |
| 8 | eqid | |- ( U LnOp W ) = ( U LnOp W ) |
|
| 9 | 3 8 4 | isblo | |- ( ( U e. NrmCVec /\ W e. NrmCVec ) -> ( T e. B <-> ( T e. ( U LnOp W ) /\ ( N ` T ) < +oo ) ) ) |
| 10 | 9 | simplbda | |- ( ( ( U e. NrmCVec /\ W e. NrmCVec ) /\ T e. B ) -> ( N ` T ) < +oo ) |
| 11 | 10 | 3impa | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> ( N ` T ) < +oo ) |
| 12 | 1 2 3 | nmoxr | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T : X --> Y ) -> ( N ` T ) e. RR* ) |
| 13 | 5 12 | syld3an3 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> ( N ` T ) e. RR* ) |
| 14 | xrrebnd | |- ( ( N ` T ) e. RR* -> ( ( N ` T ) e. RR <-> ( -oo < ( N ` T ) /\ ( N ` T ) < +oo ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> ( ( N ` T ) e. RR <-> ( -oo < ( N ` T ) /\ ( N ` T ) < +oo ) ) ) |
| 16 | 7 11 15 | mpbir2and | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. B ) -> ( N ` T ) e. RR ) |