This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a scalar product with a nonnegative real. (Contributed by NM, 1-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvs.1 | |- X = ( BaseSet ` U ) |
|
| nvs.4 | |- S = ( .sOLD ` U ) |
||
| nvs.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvsge0 | |- ( ( U e. NrmCVec /\ ( A e. RR /\ 0 <_ A ) /\ B e. X ) -> ( N ` ( A S B ) ) = ( A x. ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvs.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvs.4 | |- S = ( .sOLD ` U ) |
|
| 3 | nvs.6 | |- N = ( normCV ` U ) |
|
| 4 | recn | |- ( A e. RR -> A e. CC ) |
|
| 5 | 4 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
| 6 | 1 2 3 | nvs | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( N ` ( A S B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |
| 7 | 5 6 | syl3an2 | |- ( ( U e. NrmCVec /\ ( A e. RR /\ 0 <_ A ) /\ B e. X ) -> ( N ` ( A S B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |
| 8 | absid | |- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
|
| 9 | 8 | 3ad2ant2 | |- ( ( U e. NrmCVec /\ ( A e. RR /\ 0 <_ A ) /\ B e. X ) -> ( abs ` A ) = A ) |
| 10 | 9 | oveq1d | |- ( ( U e. NrmCVec /\ ( A e. RR /\ 0 <_ A ) /\ B e. X ) -> ( ( abs ` A ) x. ( N ` B ) ) = ( A x. ( N ` B ) ) ) |
| 11 | 7 10 | eqtrd | |- ( ( U e. NrmCVec /\ ( A e. RR /\ 0 <_ A ) /\ B e. X ) -> ( N ` ( A S B ) ) = ( A x. ( N ` B ) ) ) |