This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmuladdnn0 | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. k e. NN0 A = ( ( k x. M ) + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( k = i -> ( k x. M ) = ( i x. M ) ) |
|
| 2 | 1 | oveq1d | |- ( k = i -> ( ( k x. M ) + B ) = ( ( i x. M ) + B ) ) |
| 3 | 2 | eqeq2d | |- ( k = i -> ( A = ( ( k x. M ) + B ) <-> A = ( ( i x. M ) + B ) ) ) |
| 4 | simpr | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> i e. ZZ ) |
|
| 5 | 4 | adantr | |- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> i e. ZZ ) |
| 6 | eqcom | |- ( A = ( ( i x. M ) + B ) <-> ( ( i x. M ) + B ) = A ) |
|
| 7 | nn0cn | |- ( A e. NN0 -> A e. CC ) |
|
| 8 | 7 | adantr | |- ( ( A e. NN0 /\ M e. RR+ ) -> A e. CC ) |
| 9 | 8 | ad2antrr | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> A e. CC ) |
| 10 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 11 | modcl | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
|
| 12 | 10 11 | sylan | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
| 13 | 12 | recnd | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( A mod M ) e. CC ) |
| 14 | 13 | adantr | |- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( A mod M ) e. CC ) |
| 15 | eleq1 | |- ( ( A mod M ) = B -> ( ( A mod M ) e. CC <-> B e. CC ) ) |
|
| 16 | 15 | adantl | |- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( ( A mod M ) e. CC <-> B e. CC ) ) |
| 17 | 14 16 | mpbid | |- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> B e. CC ) |
| 18 | 17 | adantr | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> B e. CC ) |
| 19 | zcn | |- ( i e. ZZ -> i e. CC ) |
|
| 20 | 19 | adantl | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> i e. CC ) |
| 21 | rpcn | |- ( M e. RR+ -> M e. CC ) |
|
| 22 | 21 | adantl | |- ( ( A e. NN0 /\ M e. RR+ ) -> M e. CC ) |
| 23 | 22 | ad2antrr | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> M e. CC ) |
| 24 | 20 23 | mulcld | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( i x. M ) e. CC ) |
| 25 | 9 18 24 | subadd2d | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( A - B ) = ( i x. M ) <-> ( ( i x. M ) + B ) = A ) ) |
| 26 | 6 25 | bitr4id | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( A = ( ( i x. M ) + B ) <-> ( A - B ) = ( i x. M ) ) ) |
| 27 | 7 | ad2antrr | |- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> A e. CC ) |
| 28 | 27 17 | subcld | |- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( A - B ) e. CC ) |
| 29 | 28 | adantr | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( A - B ) e. CC ) |
| 30 | rpcnne0 | |- ( M e. RR+ -> ( M e. CC /\ M =/= 0 ) ) |
|
| 31 | 30 | adantl | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( M e. CC /\ M =/= 0 ) ) |
| 32 | 31 | ad2antrr | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( M e. CC /\ M =/= 0 ) ) |
| 33 | divmul3 | |- ( ( ( A - B ) e. CC /\ i e. CC /\ ( M e. CC /\ M =/= 0 ) ) -> ( ( ( A - B ) / M ) = i <-> ( A - B ) = ( i x. M ) ) ) |
|
| 34 | 29 20 32 33 | syl3anc | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( ( A - B ) / M ) = i <-> ( A - B ) = ( i x. M ) ) ) |
| 35 | oveq2 | |- ( B = ( A mod M ) -> ( A - B ) = ( A - ( A mod M ) ) ) |
|
| 36 | 35 | oveq1d | |- ( B = ( A mod M ) -> ( ( A - B ) / M ) = ( ( A - ( A mod M ) ) / M ) ) |
| 37 | 36 | eqcoms | |- ( ( A mod M ) = B -> ( ( A - B ) / M ) = ( ( A - ( A mod M ) ) / M ) ) |
| 38 | 37 | adantl | |- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( ( A - B ) / M ) = ( ( A - ( A mod M ) ) / M ) ) |
| 39 | 38 | adantr | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( A - B ) / M ) = ( ( A - ( A mod M ) ) / M ) ) |
| 40 | moddiffl | |- ( ( A e. RR /\ M e. RR+ ) -> ( ( A - ( A mod M ) ) / M ) = ( |_ ` ( A / M ) ) ) |
|
| 41 | 10 40 | sylan | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( ( A - ( A mod M ) ) / M ) = ( |_ ` ( A / M ) ) ) |
| 42 | 41 | ad2antrr | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( A - ( A mod M ) ) / M ) = ( |_ ` ( A / M ) ) ) |
| 43 | 39 42 | eqtrd | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( A - B ) / M ) = ( |_ ` ( A / M ) ) ) |
| 44 | 43 | eqeq1d | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( ( A - B ) / M ) = i <-> ( |_ ` ( A / M ) ) = i ) ) |
| 45 | 26 34 44 | 3bitr2d | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( A = ( ( i x. M ) + B ) <-> ( |_ ` ( A / M ) ) = i ) ) |
| 46 | nn0ge0 | |- ( A e. NN0 -> 0 <_ A ) |
|
| 47 | 10 46 | jca | |- ( A e. NN0 -> ( A e. RR /\ 0 <_ A ) ) |
| 48 | rpregt0 | |- ( M e. RR+ -> ( M e. RR /\ 0 < M ) ) |
|
| 49 | divge0 | |- ( ( ( A e. RR /\ 0 <_ A ) /\ ( M e. RR /\ 0 < M ) ) -> 0 <_ ( A / M ) ) |
|
| 50 | 47 48 49 | syl2an | |- ( ( A e. NN0 /\ M e. RR+ ) -> 0 <_ ( A / M ) ) |
| 51 | 10 | adantr | |- ( ( A e. NN0 /\ M e. RR+ ) -> A e. RR ) |
| 52 | rpre | |- ( M e. RR+ -> M e. RR ) |
|
| 53 | 52 | adantl | |- ( ( A e. NN0 /\ M e. RR+ ) -> M e. RR ) |
| 54 | rpne0 | |- ( M e. RR+ -> M =/= 0 ) |
|
| 55 | 54 | adantl | |- ( ( A e. NN0 /\ M e. RR+ ) -> M =/= 0 ) |
| 56 | 51 53 55 | redivcld | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( A / M ) e. RR ) |
| 57 | 0z | |- 0 e. ZZ |
|
| 58 | flge | |- ( ( ( A / M ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( A / M ) <-> 0 <_ ( |_ ` ( A / M ) ) ) ) |
|
| 59 | 56 57 58 | sylancl | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( 0 <_ ( A / M ) <-> 0 <_ ( |_ ` ( A / M ) ) ) ) |
| 60 | 50 59 | mpbid | |- ( ( A e. NN0 /\ M e. RR+ ) -> 0 <_ ( |_ ` ( A / M ) ) ) |
| 61 | breq2 | |- ( ( |_ ` ( A / M ) ) = i -> ( 0 <_ ( |_ ` ( A / M ) ) <-> 0 <_ i ) ) |
|
| 62 | 60 61 | syl5ibcom | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( ( |_ ` ( A / M ) ) = i -> 0 <_ i ) ) |
| 63 | 62 | ad2antrr | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( |_ ` ( A / M ) ) = i -> 0 <_ i ) ) |
| 64 | 45 63 | sylbid | |- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( A = ( ( i x. M ) + B ) -> 0 <_ i ) ) |
| 65 | 64 | imp | |- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> 0 <_ i ) |
| 66 | elnn0z | |- ( i e. NN0 <-> ( i e. ZZ /\ 0 <_ i ) ) |
|
| 67 | 5 65 66 | sylanbrc | |- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> i e. NN0 ) |
| 68 | simpr | |- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> A = ( ( i x. M ) + B ) ) |
|
| 69 | 3 67 68 | rspcedvdw | |- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> E. k e. NN0 A = ( ( k x. M ) + B ) ) |
| 70 | nn0z | |- ( A e. NN0 -> A e. ZZ ) |
|
| 71 | modmuladdim | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. i e. ZZ A = ( ( i x. M ) + B ) ) ) |
|
| 72 | 70 71 | sylan | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. i e. ZZ A = ( ( i x. M ) + B ) ) ) |
| 73 | 72 | imp | |- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> E. i e. ZZ A = ( ( i x. M ) + B ) ) |
| 74 | 69 73 | r19.29a | |- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> E. k e. NN0 A = ( ( k x. M ) + B ) ) |
| 75 | 74 | ex | |- ( ( A e. NN0 /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. k e. NN0 A = ( ( k x. M ) + B ) ) ) |