This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the modulo operation rewritten to give two ways of expressing the quotient when " A is divided by B using Euclidean division." Multiplying both sides by B , this implies that A mod B differs from A by an integer multiple of B . (Contributed by Jeff Madsen, 17-Jun-2010) (Revised by Mario Carneiro, 6-Sep-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | moddiffl | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modval | |- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
|
| 2 | 1 | oveq2d | |- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( A mod B ) ) = ( A - ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) ) |
| 3 | simpl | |- ( ( A e. RR /\ B e. RR+ ) -> A e. RR ) |
|
| 4 | 3 | recnd | |- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
| 5 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 6 | 5 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 7 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 8 | 7 | flcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. ZZ ) |
| 9 | 8 | zcnd | |- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
| 10 | 6 9 | mulcld | |- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) e. CC ) |
| 11 | 4 10 | nncand | |- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) = ( B x. ( |_ ` ( A / B ) ) ) ) |
| 12 | 2 11 | eqtrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( A - ( A mod B ) ) = ( B x. ( |_ ` ( A / B ) ) ) ) |
| 13 | 12 | oveq1d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) = ( ( B x. ( |_ ` ( A / B ) ) ) / B ) ) |
| 14 | rpne0 | |- ( B e. RR+ -> B =/= 0 ) |
|
| 15 | 14 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B =/= 0 ) |
| 16 | 9 6 15 | divcan3d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( B x. ( |_ ` ( A / B ) ) ) / B ) = ( |_ ` ( A / B ) ) ) |
| 17 | 13 16 | eqtrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) |