This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmuladdim | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( A e. ZZ -> A e. RR ) |
|
| 2 | modelico | |- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. ( 0 [,) M ) ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( A mod M ) e. ( 0 [,) M ) ) |
| 4 | 3 | adantr | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( A mod M ) e. ( 0 [,) M ) ) |
| 5 | eleq1 | |- ( ( A mod M ) = B -> ( ( A mod M ) e. ( 0 [,) M ) <-> B e. ( 0 [,) M ) ) ) |
|
| 6 | 5 | adantl | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( ( A mod M ) e. ( 0 [,) M ) <-> B e. ( 0 [,) M ) ) ) |
| 7 | 4 6 | mpbid | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> B e. ( 0 [,) M ) ) |
| 8 | simpll | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> A e. ZZ ) |
|
| 9 | simpr | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> B e. ( 0 [,) M ) ) |
|
| 10 | simpr | |- ( ( A e. ZZ /\ M e. RR+ ) -> M e. RR+ ) |
|
| 11 | 10 | adantr | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> M e. RR+ ) |
| 12 | modmuladd | |- ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( ( A mod M ) = B <-> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |
|
| 13 | 8 9 11 12 | syl3anc | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> ( ( A mod M ) = B <-> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |
| 14 | 13 | biimpd | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> ( ( A mod M ) = B -> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |
| 15 | 14 | impancom | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( B e. ( 0 [,) M ) -> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |
| 16 | 7 15 | mpd | |- ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> E. k e. ZZ A = ( ( k x. M ) + B ) ) |
| 17 | 16 | ex | |- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |