This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | modmuladdnn0 | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑘 = 𝑖 → ( 𝑘 · 𝑀 ) = ( 𝑖 · 𝑀 ) ) | |
| 2 | 1 | oveq1d | ⊢ ( 𝑘 = 𝑖 → ( ( 𝑘 · 𝑀 ) + 𝐵 ) = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) |
| 3 | 2 | eqeq2d | ⊢ ( 𝑘 = 𝑖 → ( 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ↔ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) |
| 4 | simpr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℤ ) | |
| 5 | 4 | adantr | ⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 𝑖 ∈ ℤ ) |
| 6 | eqcom | ⊢ ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ↔ ( ( 𝑖 · 𝑀 ) + 𝐵 ) = 𝐴 ) | |
| 7 | nn0cn | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℂ ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 9 | 8 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
| 10 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 11 | modcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) | |
| 12 | 10 11 | sylan | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℝ ) |
| 13 | 12 | recnd | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
| 14 | 13 | adantr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( 𝐴 mod 𝑀 ) ∈ ℂ ) |
| 15 | eleq1 | ⊢ ( ( 𝐴 mod 𝑀 ) = 𝐵 → ( ( 𝐴 mod 𝑀 ) ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) | |
| 16 | 15 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( ( 𝐴 mod 𝑀 ) ∈ ℂ ↔ 𝐵 ∈ ℂ ) ) |
| 17 | 14 16 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → 𝐵 ∈ ℂ ) |
| 18 | 17 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 19 | zcn | ⊢ ( 𝑖 ∈ ℤ → 𝑖 ∈ ℂ ) | |
| 20 | 19 | adantl | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝑖 ∈ ℂ ) |
| 21 | rpcn | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℂ ) | |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℂ ) |
| 23 | 22 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
| 24 | 20 23 | mulcld | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝑖 · 𝑀 ) ∈ ℂ ) |
| 25 | 9 18 24 | subadd2d | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ↔ ( ( 𝑖 · 𝑀 ) + 𝐵 ) = 𝐴 ) ) |
| 26 | 6 25 | bitr4id | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ↔ ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ) ) |
| 27 | 7 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → 𝐴 ∈ ℂ ) |
| 28 | 27 17 | subcld | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 29 | 28 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
| 30 | rpcnne0 | ⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
| 32 | 31 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) |
| 33 | divmul3 | ⊢ ( ( ( 𝐴 − 𝐵 ) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ ( 𝑀 ∈ ℂ ∧ 𝑀 ≠ 0 ) ) → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) = 𝑖 ↔ ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ) ) | |
| 34 | 29 20 32 33 | syl3anc | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) = 𝑖 ↔ ( 𝐴 − 𝐵 ) = ( 𝑖 · 𝑀 ) ) ) |
| 35 | oveq2 | ⊢ ( 𝐵 = ( 𝐴 mod 𝑀 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 − ( 𝐴 mod 𝑀 ) ) ) | |
| 36 | 35 | oveq1d | ⊢ ( 𝐵 = ( 𝐴 mod 𝑀 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
| 37 | 36 | eqcoms | ⊢ ( ( 𝐴 mod 𝑀 ) = 𝐵 → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) ) |
| 40 | moddiffl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) | |
| 41 | 10 40 | sylan | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
| 42 | 41 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − ( 𝐴 mod 𝑀 ) ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
| 43 | 39 42 | eqtrd | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( 𝐴 − 𝐵 ) / 𝑀 ) = ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
| 44 | 43 | eqeq1d | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( ( 𝐴 − 𝐵 ) / 𝑀 ) = 𝑖 ↔ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 ) ) |
| 45 | 26 34 44 | 3bitr2d | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ↔ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 ) ) |
| 46 | nn0ge0 | ⊢ ( 𝐴 ∈ ℕ0 → 0 ≤ 𝐴 ) | |
| 47 | 10 46 | jca | ⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
| 48 | rpregt0 | ⊢ ( 𝑀 ∈ ℝ+ → ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) | |
| 49 | divge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝑀 ∈ ℝ ∧ 0 < 𝑀 ) ) → 0 ≤ ( 𝐴 / 𝑀 ) ) | |
| 50 | 47 48 49 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( 𝐴 / 𝑀 ) ) |
| 51 | 10 | adantr | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝐴 ∈ ℝ ) |
| 52 | rpre | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ ) | |
| 53 | 52 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ∈ ℝ ) |
| 54 | rpne0 | ⊢ ( 𝑀 ∈ ℝ+ → 𝑀 ≠ 0 ) | |
| 55 | 54 | adantl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 𝑀 ≠ 0 ) |
| 56 | 51 53 55 | redivcld | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 𝐴 / 𝑀 ) ∈ ℝ ) |
| 57 | 0z | ⊢ 0 ∈ ℤ | |
| 58 | flge | ⊢ ( ( ( 𝐴 / 𝑀 ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( 0 ≤ ( 𝐴 / 𝑀 ) ↔ 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) ) | |
| 59 | 56 57 58 | sylancl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( 0 ≤ ( 𝐴 / 𝑀 ) ↔ 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) ) |
| 60 | 50 59 | mpbid | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ) |
| 61 | breq2 | ⊢ ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 → ( 0 ≤ ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) ↔ 0 ≤ 𝑖 ) ) | |
| 62 | 60 61 | syl5ibcom | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 → 0 ≤ 𝑖 ) ) |
| 63 | 62 | ad2antrr | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝐴 / 𝑀 ) ) = 𝑖 → 0 ≤ 𝑖 ) ) |
| 64 | 45 63 | sylbid | ⊢ ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) → ( 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) → 0 ≤ 𝑖 ) ) |
| 65 | 64 | imp | ⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 0 ≤ 𝑖 ) |
| 66 | elnn0z | ⊢ ( 𝑖 ∈ ℕ0 ↔ ( 𝑖 ∈ ℤ ∧ 0 ≤ 𝑖 ) ) | |
| 67 | 5 65 66 | sylanbrc | ⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 𝑖 ∈ ℕ0 ) |
| 68 | simpr | ⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) | |
| 69 | 3 67 68 | rspcedvdw | ⊢ ( ( ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) ∧ 𝑖 ∈ ℤ ) ∧ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) |
| 70 | nn0z | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) | |
| 71 | modmuladdim | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) | |
| 72 | 70 71 | sylan | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) ) |
| 73 | 72 | imp | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ∃ 𝑖 ∈ ℤ 𝐴 = ( ( 𝑖 · 𝑀 ) + 𝐵 ) ) |
| 74 | 69 73 | r19.29a | ⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) ∧ ( 𝐴 mod 𝑀 ) = 𝐵 ) → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) |
| 75 | 74 | ex | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝑀 ∈ ℝ+ ) → ( ( 𝐴 mod 𝑀 ) = 𝐵 → ∃ 𝑘 ∈ ℕ0 𝐴 = ( ( 𝑘 · 𝑀 ) + 𝐵 ) ) ) |