This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The negation of a number modulo a positive number is equal to the difference of the modulus and the number modulo the modulus. (Contributed by AV, 5-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negmod | |- ( ( A e. RR /\ N e. RR+ ) -> ( -u A mod N ) = ( ( N - A ) mod N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpcn | |- ( N e. RR+ -> N e. CC ) |
|
| 2 | recn | |- ( A e. RR -> A e. CC ) |
|
| 3 | negsub | |- ( ( N e. CC /\ A e. CC ) -> ( N + -u A ) = ( N - A ) ) |
|
| 4 | 1 2 3 | syl2anr | |- ( ( A e. RR /\ N e. RR+ ) -> ( N + -u A ) = ( N - A ) ) |
| 5 | 4 | eqcomd | |- ( ( A e. RR /\ N e. RR+ ) -> ( N - A ) = ( N + -u A ) ) |
| 6 | 5 | oveq1d | |- ( ( A e. RR /\ N e. RR+ ) -> ( ( N - A ) mod N ) = ( ( N + -u A ) mod N ) ) |
| 7 | 1 | mullidd | |- ( N e. RR+ -> ( 1 x. N ) = N ) |
| 8 | 7 | adantl | |- ( ( A e. RR /\ N e. RR+ ) -> ( 1 x. N ) = N ) |
| 9 | 8 | oveq1d | |- ( ( A e. RR /\ N e. RR+ ) -> ( ( 1 x. N ) + -u A ) = ( N + -u A ) ) |
| 10 | 9 | oveq1d | |- ( ( A e. RR /\ N e. RR+ ) -> ( ( ( 1 x. N ) + -u A ) mod N ) = ( ( N + -u A ) mod N ) ) |
| 11 | 1cnd | |- ( A e. RR -> 1 e. CC ) |
|
| 12 | mulcl | |- ( ( 1 e. CC /\ N e. CC ) -> ( 1 x. N ) e. CC ) |
|
| 13 | 11 1 12 | syl2an | |- ( ( A e. RR /\ N e. RR+ ) -> ( 1 x. N ) e. CC ) |
| 14 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 15 | 14 | recnd | |- ( A e. RR -> -u A e. CC ) |
| 16 | 15 | adantr | |- ( ( A e. RR /\ N e. RR+ ) -> -u A e. CC ) |
| 17 | 13 16 | addcomd | |- ( ( A e. RR /\ N e. RR+ ) -> ( ( 1 x. N ) + -u A ) = ( -u A + ( 1 x. N ) ) ) |
| 18 | 17 | oveq1d | |- ( ( A e. RR /\ N e. RR+ ) -> ( ( ( 1 x. N ) + -u A ) mod N ) = ( ( -u A + ( 1 x. N ) ) mod N ) ) |
| 19 | 14 | adantr | |- ( ( A e. RR /\ N e. RR+ ) -> -u A e. RR ) |
| 20 | simpr | |- ( ( A e. RR /\ N e. RR+ ) -> N e. RR+ ) |
|
| 21 | 1zzd | |- ( ( A e. RR /\ N e. RR+ ) -> 1 e. ZZ ) |
|
| 22 | modcyc | |- ( ( -u A e. RR /\ N e. RR+ /\ 1 e. ZZ ) -> ( ( -u A + ( 1 x. N ) ) mod N ) = ( -u A mod N ) ) |
|
| 23 | 19 20 21 22 | syl3anc | |- ( ( A e. RR /\ N e. RR+ ) -> ( ( -u A + ( 1 x. N ) ) mod N ) = ( -u A mod N ) ) |
| 24 | 18 23 | eqtrd | |- ( ( A e. RR /\ N e. RR+ ) -> ( ( ( 1 x. N ) + -u A ) mod N ) = ( -u A mod N ) ) |
| 25 | 6 10 24 | 3eqtr2rd | |- ( ( A e. RR /\ N e. RR+ ) -> ( -u A mod N ) = ( ( N - A ) mod N ) ) |