This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generalization of the triangle inequality to the point-set distance function. Under the usual notation where the same symbol d denotes the point-point and point-set distance functions, this theorem would be written d ( a , S ) <_ d ( a , b ) + d ( b , S ) . (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| Assertion | metdstri | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| 2 | simprr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( F ` A ) e. RR ) |
|
| 3 | simprl | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( A D B ) e. RR ) |
|
| 4 | rexsub | |- ( ( ( F ` A ) e. RR /\ ( A D B ) e. RR ) -> ( ( F ` A ) +e -e ( A D B ) ) = ( ( F ` A ) - ( A D B ) ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( ( F ` A ) +e -e ( A D B ) ) = ( ( F ` A ) - ( A D B ) ) ) |
| 6 | 5 | oveq2d | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) = ( B ( ball ` D ) ( ( F ` A ) - ( A D B ) ) ) ) |
| 7 | simpll | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> D e. ( *Met ` X ) ) |
|
| 8 | 7 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> D e. ( *Met ` X ) ) |
| 9 | simprr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> B e. X ) |
|
| 10 | 9 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> B e. X ) |
| 11 | simprl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> A e. X ) |
|
| 12 | 11 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> A e. X ) |
| 13 | 2 3 | resubcld | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( ( F ` A ) - ( A D B ) ) e. RR ) |
| 14 | 3 | leidd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( A D B ) <_ ( A D B ) ) |
| 15 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) = ( B D A ) ) |
|
| 16 | 7 11 9 15 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( A D B ) = ( B D A ) ) |
| 17 | 16 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( A D B ) = ( B D A ) ) |
| 18 | 17 | eqcomd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( B D A ) = ( A D B ) ) |
| 19 | 2 | recnd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( F ` A ) e. CC ) |
| 20 | 3 | recnd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( A D B ) e. CC ) |
| 21 | 19 20 | nncand | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( ( F ` A ) - ( ( F ` A ) - ( A D B ) ) ) = ( A D B ) ) |
| 22 | 14 18 21 | 3brtr4d | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( B D A ) <_ ( ( F ` A ) - ( ( F ` A ) - ( A D B ) ) ) ) |
| 23 | blss2 | |- ( ( ( D e. ( *Met ` X ) /\ B e. X /\ A e. X ) /\ ( ( ( F ` A ) - ( A D B ) ) e. RR /\ ( F ` A ) e. RR /\ ( B D A ) <_ ( ( F ` A ) - ( ( F ` A ) - ( A D B ) ) ) ) ) -> ( B ( ball ` D ) ( ( F ` A ) - ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) ) |
|
| 24 | 8 10 12 13 2 22 23 | syl33anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( B ( ball ` D ) ( ( F ` A ) - ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) ) |
| 25 | 6 24 | eqsstrd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) e. RR ) ) -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) ) |
| 26 | 25 | expr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) e. RR ) -> ( ( F ` A ) e. RR -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) ) ) |
| 27 | 7 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> D e. ( *Met ` X ) ) |
| 28 | 9 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> B e. X ) |
| 29 | 1 | metdsf | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) |
| 30 | 29 | adantr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> F : X --> ( 0 [,] +oo ) ) |
| 31 | 30 11 | ffvelcdmd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) e. ( 0 [,] +oo ) ) |
| 32 | eliccxr | |- ( ( F ` A ) e. ( 0 [,] +oo ) -> ( F ` A ) e. RR* ) |
|
| 33 | 31 32 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) e. RR* ) |
| 34 | 33 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) e. RR ) -> ( F ` A ) e. RR* ) |
| 35 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
|
| 36 | 7 11 9 35 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( A D B ) e. RR* ) |
| 37 | 36 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) e. RR ) -> ( A D B ) e. RR* ) |
| 38 | 37 | xnegcld | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) e. RR ) -> -e ( A D B ) e. RR* ) |
| 39 | 34 38 | xaddcld | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) e. RR ) -> ( ( F ` A ) +e -e ( A D B ) ) e. RR* ) |
| 40 | 39 | adantrr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( ( F ` A ) +e -e ( A D B ) ) e. RR* ) |
| 41 | pnfxr | |- +oo e. RR* |
|
| 42 | 41 | a1i | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> +oo e. RR* ) |
| 43 | pnfge | |- ( ( ( F ` A ) +e -e ( A D B ) ) e. RR* -> ( ( F ` A ) +e -e ( A D B ) ) <_ +oo ) |
|
| 44 | 40 43 | syl | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( ( F ` A ) +e -e ( A D B ) ) <_ +oo ) |
| 45 | ssbl | |- ( ( ( D e. ( *Met ` X ) /\ B e. X ) /\ ( ( ( F ` A ) +e -e ( A D B ) ) e. RR* /\ +oo e. RR* ) /\ ( ( F ` A ) +e -e ( A D B ) ) <_ +oo ) -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( B ( ball ` D ) +oo ) ) |
|
| 46 | 27 28 40 42 44 45 | syl221anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( B ( ball ` D ) +oo ) ) |
| 47 | simprr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( F ` A ) = +oo ) |
|
| 48 | 47 | oveq2d | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( A ( ball ` D ) ( F ` A ) ) = ( A ( ball ` D ) +oo ) ) |
| 49 | 11 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> A e. X ) |
| 50 | simprl | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( A D B ) e. RR ) |
|
| 51 | xblpnf | |- ( ( D e. ( *Met ` X ) /\ A e. X ) -> ( B e. ( A ( ball ` D ) +oo ) <-> ( B e. X /\ ( A D B ) e. RR ) ) ) |
|
| 52 | 27 49 51 | syl2anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( B e. ( A ( ball ` D ) +oo ) <-> ( B e. X /\ ( A D B ) e. RR ) ) ) |
| 53 | 28 50 52 | mpbir2and | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> B e. ( A ( ball ` D ) +oo ) ) |
| 54 | blpnfctr | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. ( A ( ball ` D ) +oo ) ) -> ( A ( ball ` D ) +oo ) = ( B ( ball ` D ) +oo ) ) |
|
| 55 | 27 49 53 54 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( A ( ball ` D ) +oo ) = ( B ( ball ` D ) +oo ) ) |
| 56 | 48 55 | eqtr2d | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( B ( ball ` D ) +oo ) = ( A ( ball ` D ) ( F ` A ) ) ) |
| 57 | 46 56 | sseqtrd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( ( A D B ) e. RR /\ ( F ` A ) = +oo ) ) -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) ) |
| 58 | 57 | expr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) e. RR ) -> ( ( F ` A ) = +oo -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) ) ) |
| 59 | elxrge0 | |- ( ( F ` A ) e. ( 0 [,] +oo ) <-> ( ( F ` A ) e. RR* /\ 0 <_ ( F ` A ) ) ) |
|
| 60 | 59 | simprbi | |- ( ( F ` A ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` A ) ) |
| 61 | 31 60 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> 0 <_ ( F ` A ) ) |
| 62 | ge0nemnf | |- ( ( ( F ` A ) e. RR* /\ 0 <_ ( F ` A ) ) -> ( F ` A ) =/= -oo ) |
|
| 63 | 33 61 62 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) =/= -oo ) |
| 64 | 33 63 | jca | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) e. RR* /\ ( F ` A ) =/= -oo ) ) |
| 65 | 64 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) e. RR ) -> ( ( F ` A ) e. RR* /\ ( F ` A ) =/= -oo ) ) |
| 66 | xrnemnf | |- ( ( ( F ` A ) e. RR* /\ ( F ` A ) =/= -oo ) <-> ( ( F ` A ) e. RR \/ ( F ` A ) = +oo ) ) |
|
| 67 | 65 66 | sylib | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) e. RR ) -> ( ( F ` A ) e. RR \/ ( F ` A ) = +oo ) ) |
| 68 | 26 58 67 | mpjaod | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) e. RR ) -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) ) |
| 69 | pnfnlt | |- ( ( F ` A ) e. RR* -> -. +oo < ( F ` A ) ) |
|
| 70 | 33 69 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> -. +oo < ( F ` A ) ) |
| 71 | 70 | adantr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) = +oo ) -> -. +oo < ( F ` A ) ) |
| 72 | 36 | xnegcld | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> -e ( A D B ) e. RR* ) |
| 73 | 33 72 | xaddcld | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) +e -e ( A D B ) ) e. RR* ) |
| 74 | xbln0 | |- ( ( D e. ( *Met ` X ) /\ B e. X /\ ( ( F ` A ) +e -e ( A D B ) ) e. RR* ) -> ( ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) =/= (/) <-> 0 < ( ( F ` A ) +e -e ( A D B ) ) ) ) |
|
| 75 | 7 9 73 74 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) =/= (/) <-> 0 < ( ( F ` A ) +e -e ( A D B ) ) ) ) |
| 76 | xposdif | |- ( ( ( A D B ) e. RR* /\ ( F ` A ) e. RR* ) -> ( ( A D B ) < ( F ` A ) <-> 0 < ( ( F ` A ) +e -e ( A D B ) ) ) ) |
|
| 77 | 36 33 76 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) < ( F ` A ) <-> 0 < ( ( F ` A ) +e -e ( A D B ) ) ) ) |
| 78 | 75 77 | bitr4d | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) =/= (/) <-> ( A D B ) < ( F ` A ) ) ) |
| 79 | breq1 | |- ( ( A D B ) = +oo -> ( ( A D B ) < ( F ` A ) <-> +oo < ( F ` A ) ) ) |
|
| 80 | 78 79 | sylan9bb | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) = +oo ) -> ( ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) =/= (/) <-> +oo < ( F ` A ) ) ) |
| 81 | 80 | necon1bbid | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) = +oo ) -> ( -. +oo < ( F ` A ) <-> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) = (/) ) ) |
| 82 | 71 81 | mpbid | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) = +oo ) -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) = (/) ) |
| 83 | 0ss | |- (/) C_ ( A ( ball ` D ) ( F ` A ) ) |
|
| 84 | 82 83 | eqsstrdi | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) /\ ( A D B ) = +oo ) -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) ) |
| 85 | xmetge0 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |
|
| 86 | 7 11 9 85 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> 0 <_ ( A D B ) ) |
| 87 | ge0nemnf | |- ( ( ( A D B ) e. RR* /\ 0 <_ ( A D B ) ) -> ( A D B ) =/= -oo ) |
|
| 88 | 36 86 87 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( A D B ) =/= -oo ) |
| 89 | 36 88 | jca | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) e. RR* /\ ( A D B ) =/= -oo ) ) |
| 90 | xrnemnf | |- ( ( ( A D B ) e. RR* /\ ( A D B ) =/= -oo ) <-> ( ( A D B ) e. RR \/ ( A D B ) = +oo ) ) |
|
| 91 | 89 90 | sylib | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( A D B ) e. RR \/ ( A D B ) = +oo ) ) |
| 92 | 68 84 91 | mpjaodan | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) ) |
| 93 | sslin | |- ( ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) C_ ( A ( ball ` D ) ( F ` A ) ) -> ( S i^i ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) ) C_ ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) ) |
|
| 94 | 92 93 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( S i^i ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) ) C_ ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) ) |
| 95 | 33 | xrleidd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) <_ ( F ` A ) ) |
| 96 | simplr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> S C_ X ) |
|
| 97 | 1 | metdsge | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) e. RR* ) -> ( ( F ` A ) <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) ) |
| 98 | 7 96 11 33 97 | syl31anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) ) |
| 99 | 95 98 | mpbid | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) |
| 100 | sseq0 | |- ( ( ( S i^i ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) ) C_ ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) /\ ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) -> ( S i^i ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) ) = (/) ) |
|
| 101 | 94 99 100 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( S i^i ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) ) = (/) ) |
| 102 | 1 | metdsge | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ B e. X ) /\ ( ( F ` A ) +e -e ( A D B ) ) e. RR* ) -> ( ( ( F ` A ) +e -e ( A D B ) ) <_ ( F ` B ) <-> ( S i^i ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) ) = (/) ) ) |
| 103 | 7 96 9 73 102 | syl31anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( F ` A ) +e -e ( A D B ) ) <_ ( F ` B ) <-> ( S i^i ( B ( ball ` D ) ( ( F ` A ) +e -e ( A D B ) ) ) ) = (/) ) ) |
| 104 | 101 103 | mpbird | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` A ) +e -e ( A D B ) ) <_ ( F ` B ) ) |
| 105 | 30 9 | ffvelcdmd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` B ) e. ( 0 [,] +oo ) ) |
| 106 | eliccxr | |- ( ( F ` B ) e. ( 0 [,] +oo ) -> ( F ` B ) e. RR* ) |
|
| 107 | 105 106 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` B ) e. RR* ) |
| 108 | elxrge0 | |- ( ( F ` B ) e. ( 0 [,] +oo ) <-> ( ( F ` B ) e. RR* /\ 0 <_ ( F ` B ) ) ) |
|
| 109 | 108 | simprbi | |- ( ( F ` B ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` B ) ) |
| 110 | 105 109 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> 0 <_ ( F ` B ) ) |
| 111 | xlesubadd | |- ( ( ( ( F ` A ) e. RR* /\ ( A D B ) e. RR* /\ ( F ` B ) e. RR* ) /\ ( 0 <_ ( F ` A ) /\ ( A D B ) =/= -oo /\ 0 <_ ( F ` B ) ) ) -> ( ( ( F ` A ) +e -e ( A D B ) ) <_ ( F ` B ) <-> ( F ` A ) <_ ( ( F ` B ) +e ( A D B ) ) ) ) |
|
| 112 | 33 36 107 61 88 110 111 | syl33anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( ( F ` A ) +e -e ( A D B ) ) <_ ( F ` B ) <-> ( F ` A ) <_ ( ( F ` B ) +e ( A D B ) ) ) ) |
| 113 | 104 112 | mpbid | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) <_ ( ( F ` B ) +e ( A D B ) ) ) |
| 114 | xaddcom | |- ( ( ( F ` B ) e. RR* /\ ( A D B ) e. RR* ) -> ( ( F ` B ) +e ( A D B ) ) = ( ( A D B ) +e ( F ` B ) ) ) |
|
| 115 | 107 36 114 | syl2anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( ( F ` B ) +e ( A D B ) ) = ( ( A D B ) +e ( F ` B ) ) ) |
| 116 | 113 115 | breqtrd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) |