This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An extended real other than minus infinity is real or positive infinite. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrnemnf | |- ( ( A e. RR* /\ A =/= -oo ) <-> ( A e. RR \/ A = +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.61 | |- ( ( ( ( A e. RR \/ A = +oo ) \/ A = -oo ) /\ -. A = -oo ) <-> ( ( A e. RR \/ A = +oo ) /\ -. A = -oo ) ) |
|
| 2 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 3 | df-3or | |- ( ( A e. RR \/ A = +oo \/ A = -oo ) <-> ( ( A e. RR \/ A = +oo ) \/ A = -oo ) ) |
|
| 4 | 2 3 | bitri | |- ( A e. RR* <-> ( ( A e. RR \/ A = +oo ) \/ A = -oo ) ) |
| 5 | df-ne | |- ( A =/= -oo <-> -. A = -oo ) |
|
| 6 | 4 5 | anbi12i | |- ( ( A e. RR* /\ A =/= -oo ) <-> ( ( ( A e. RR \/ A = +oo ) \/ A = -oo ) /\ -. A = -oo ) ) |
| 7 | renemnf | |- ( A e. RR -> A =/= -oo ) |
|
| 8 | pnfnemnf | |- +oo =/= -oo |
|
| 9 | neeq1 | |- ( A = +oo -> ( A =/= -oo <-> +oo =/= -oo ) ) |
|
| 10 | 8 9 | mpbiri | |- ( A = +oo -> A =/= -oo ) |
| 11 | 7 10 | jaoi | |- ( ( A e. RR \/ A = +oo ) -> A =/= -oo ) |
| 12 | 11 | neneqd | |- ( ( A e. RR \/ A = +oo ) -> -. A = -oo ) |
| 13 | 12 | pm4.71i | |- ( ( A e. RR \/ A = +oo ) <-> ( ( A e. RR \/ A = +oo ) /\ -. A = -oo ) ) |
| 14 | 1 6 13 | 3bitr4i | |- ( ( A e. RR* /\ A =/= -oo ) <-> ( A e. RR \/ A = +oo ) ) |