This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blpnfctr | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( P ( ball ` D ) +oo ) = ( A ( ball ` D ) +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( `' D " RR ) = ( `' D " RR ) |
|
| 2 | 1 | xmeter | |- ( D e. ( *Met ` X ) -> ( `' D " RR ) Er X ) |
| 3 | 2 | 3ad2ant1 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( `' D " RR ) Er X ) |
| 4 | simp3 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> A e. ( P ( ball ` D ) +oo ) ) |
|
| 5 | 1 | xmetec | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> [ P ] ( `' D " RR ) = ( P ( ball ` D ) +oo ) ) |
| 6 | 5 | 3adant3 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> [ P ] ( `' D " RR ) = ( P ( ball ` D ) +oo ) ) |
| 7 | 4 6 | eleqtrrd | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> A e. [ P ] ( `' D " RR ) ) |
| 8 | elecg | |- ( ( A e. ( P ( ball ` D ) +oo ) /\ P e. X ) -> ( A e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) A ) ) |
|
| 9 | 8 | ancoms | |- ( ( P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( A e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) A ) ) |
| 10 | 9 | 3adant1 | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( A e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) A ) ) |
| 11 | 7 10 | mpbid | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> P ( `' D " RR ) A ) |
| 12 | 3 11 | erthi | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> [ P ] ( `' D " RR ) = [ A ] ( `' D " RR ) ) |
| 13 | pnfxr | |- +oo e. RR* |
|
| 14 | blssm | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ +oo e. RR* ) -> ( P ( ball ` D ) +oo ) C_ X ) |
|
| 15 | 13 14 | mp3an3 | |- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( P ( ball ` D ) +oo ) C_ X ) |
| 16 | 15 | sselda | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. ( P ( ball ` D ) +oo ) ) -> A e. X ) |
| 17 | 1 | xmetec | |- ( ( D e. ( *Met ` X ) /\ A e. X ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) |
| 18 | 17 | adantlr | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. X ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) |
| 19 | 16 18 | syldan | |- ( ( ( D e. ( *Met ` X ) /\ P e. X ) /\ A e. ( P ( ball ` D ) +oo ) ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) |
| 20 | 19 | 3impa | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> [ A ] ( `' D " RR ) = ( A ( ball ` D ) +oo ) ) |
| 21 | 12 6 20 | 3eqtr3d | |- ( ( D e. ( *Met ` X ) /\ P e. X /\ A e. ( P ( ball ` D ) +oo ) ) -> ( P ( ball ` D ) +oo ) = ( A ( ball ` D ) +oo ) ) |