This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance from a point to a set is bounded by the distance to any member of the set. (Contributed by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| Assertion | metdsle | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` B ) <_ ( A D B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| 2 | simprr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> B e. X ) |
|
| 3 | simpr | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> S C_ X ) |
|
| 4 | 3 | sselda | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ A e. S ) -> A e. X ) |
| 5 | 4 | adantrr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> A e. X ) |
| 6 | 2 5 | jca | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( B e. X /\ A e. X ) ) |
| 7 | 1 | metdstri | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( B e. X /\ A e. X ) ) -> ( F ` B ) <_ ( ( B D A ) +e ( F ` A ) ) ) |
| 8 | 6 7 | syldan | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` B ) <_ ( ( B D A ) +e ( F ` A ) ) ) |
| 9 | simpll | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> D e. ( *Met ` X ) ) |
|
| 10 | xmetsym | |- ( ( D e. ( *Met ` X ) /\ B e. X /\ A e. X ) -> ( B D A ) = ( A D B ) ) |
|
| 11 | 9 2 5 10 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( B D A ) = ( A D B ) ) |
| 12 | 1 | metds0 | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. S ) -> ( F ` A ) = 0 ) |
| 13 | 12 | 3expa | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ A e. S ) -> ( F ` A ) = 0 ) |
| 14 | 13 | adantrr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` A ) = 0 ) |
| 15 | 11 14 | oveq12d | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( ( B D A ) +e ( F ` A ) ) = ( ( A D B ) +e 0 ) ) |
| 16 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
|
| 17 | 9 5 2 16 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( A D B ) e. RR* ) |
| 18 | 17 | xaddridd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( ( A D B ) +e 0 ) = ( A D B ) ) |
| 19 | 15 18 | eqtrd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( ( B D A ) +e ( F ` A ) ) = ( A D B ) ) |
| 20 | 8 19 | breqtrd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. S /\ B e. X ) ) -> ( F ` B ) <_ ( A D B ) ) |