This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xaddcom | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr | |- ( A e. RR* <-> ( A e. RR \/ A = +oo \/ A = -oo ) ) |
|
| 2 | elxr | |- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
|
| 3 | recn | |- ( A e. RR -> A e. CC ) |
|
| 4 | recn | |- ( B e. RR -> B e. CC ) |
|
| 5 | addcom | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
|
| 6 | 3 4 5 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
| 7 | rexadd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( A + B ) ) |
|
| 8 | rexadd | |- ( ( B e. RR /\ A e. RR ) -> ( B +e A ) = ( B + A ) ) |
|
| 9 | 8 | ancoms | |- ( ( A e. RR /\ B e. RR ) -> ( B +e A ) = ( B + A ) ) |
| 10 | 6 7 9 | 3eqtr4d | |- ( ( A e. RR /\ B e. RR ) -> ( A +e B ) = ( B +e A ) ) |
| 11 | oveq2 | |- ( B = +oo -> ( A +e B ) = ( A +e +oo ) ) |
|
| 12 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 13 | renemnf | |- ( A e. RR -> A =/= -oo ) |
|
| 14 | xaddpnf1 | |- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
|
| 15 | 12 13 14 | syl2anc | |- ( A e. RR -> ( A +e +oo ) = +oo ) |
| 16 | 11 15 | sylan9eqr | |- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) = +oo ) |
| 17 | oveq1 | |- ( B = +oo -> ( B +e A ) = ( +oo +e A ) ) |
|
| 18 | xaddpnf2 | |- ( ( A e. RR* /\ A =/= -oo ) -> ( +oo +e A ) = +oo ) |
|
| 19 | 12 13 18 | syl2anc | |- ( A e. RR -> ( +oo +e A ) = +oo ) |
| 20 | 17 19 | sylan9eqr | |- ( ( A e. RR /\ B = +oo ) -> ( B +e A ) = +oo ) |
| 21 | 16 20 | eqtr4d | |- ( ( A e. RR /\ B = +oo ) -> ( A +e B ) = ( B +e A ) ) |
| 22 | oveq2 | |- ( B = -oo -> ( A +e B ) = ( A +e -oo ) ) |
|
| 23 | renepnf | |- ( A e. RR -> A =/= +oo ) |
|
| 24 | xaddmnf1 | |- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
|
| 25 | 12 23 24 | syl2anc | |- ( A e. RR -> ( A +e -oo ) = -oo ) |
| 26 | 22 25 | sylan9eqr | |- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = -oo ) |
| 27 | oveq1 | |- ( B = -oo -> ( B +e A ) = ( -oo +e A ) ) |
|
| 28 | xaddmnf2 | |- ( ( A e. RR* /\ A =/= +oo ) -> ( -oo +e A ) = -oo ) |
|
| 29 | 12 23 28 | syl2anc | |- ( A e. RR -> ( -oo +e A ) = -oo ) |
| 30 | 27 29 | sylan9eqr | |- ( ( A e. RR /\ B = -oo ) -> ( B +e A ) = -oo ) |
| 31 | 26 30 | eqtr4d | |- ( ( A e. RR /\ B = -oo ) -> ( A +e B ) = ( B +e A ) ) |
| 32 | 10 21 31 | 3jaodan | |- ( ( A e. RR /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( A +e B ) = ( B +e A ) ) |
| 33 | 2 32 | sylan2b | |- ( ( A e. RR /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
| 34 | pnfaddmnf | |- ( +oo +e -oo ) = 0 |
|
| 35 | mnfaddpnf | |- ( -oo +e +oo ) = 0 |
|
| 36 | 34 35 | eqtr4i | |- ( +oo +e -oo ) = ( -oo +e +oo ) |
| 37 | simpr | |- ( ( B e. RR* /\ B = -oo ) -> B = -oo ) |
|
| 38 | 37 | oveq2d | |- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = ( +oo +e -oo ) ) |
| 39 | 37 | oveq1d | |- ( ( B e. RR* /\ B = -oo ) -> ( B +e +oo ) = ( -oo +e +oo ) ) |
| 40 | 36 38 39 | 3eqtr4a | |- ( ( B e. RR* /\ B = -oo ) -> ( +oo +e B ) = ( B +e +oo ) ) |
| 41 | xaddpnf2 | |- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = +oo ) |
|
| 42 | xaddpnf1 | |- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
|
| 43 | 41 42 | eqtr4d | |- ( ( B e. RR* /\ B =/= -oo ) -> ( +oo +e B ) = ( B +e +oo ) ) |
| 44 | 40 43 | pm2.61dane | |- ( B e. RR* -> ( +oo +e B ) = ( B +e +oo ) ) |
| 45 | 44 | adantl | |- ( ( A = +oo /\ B e. RR* ) -> ( +oo +e B ) = ( B +e +oo ) ) |
| 46 | simpl | |- ( ( A = +oo /\ B e. RR* ) -> A = +oo ) |
|
| 47 | 46 | oveq1d | |- ( ( A = +oo /\ B e. RR* ) -> ( A +e B ) = ( +oo +e B ) ) |
| 48 | 46 | oveq2d | |- ( ( A = +oo /\ B e. RR* ) -> ( B +e A ) = ( B +e +oo ) ) |
| 49 | 45 47 48 | 3eqtr4d | |- ( ( A = +oo /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
| 50 | 35 34 | eqtr4i | |- ( -oo +e +oo ) = ( +oo +e -oo ) |
| 51 | simpr | |- ( ( B e. RR* /\ B = +oo ) -> B = +oo ) |
|
| 52 | 51 | oveq2d | |- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = ( -oo +e +oo ) ) |
| 53 | 51 | oveq1d | |- ( ( B e. RR* /\ B = +oo ) -> ( B +e -oo ) = ( +oo +e -oo ) ) |
| 54 | 50 52 53 | 3eqtr4a | |- ( ( B e. RR* /\ B = +oo ) -> ( -oo +e B ) = ( B +e -oo ) ) |
| 55 | xaddmnf2 | |- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
|
| 56 | xaddmnf1 | |- ( ( B e. RR* /\ B =/= +oo ) -> ( B +e -oo ) = -oo ) |
|
| 57 | 55 56 | eqtr4d | |- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = ( B +e -oo ) ) |
| 58 | 54 57 | pm2.61dane | |- ( B e. RR* -> ( -oo +e B ) = ( B +e -oo ) ) |
| 59 | 58 | adantl | |- ( ( A = -oo /\ B e. RR* ) -> ( -oo +e B ) = ( B +e -oo ) ) |
| 60 | simpl | |- ( ( A = -oo /\ B e. RR* ) -> A = -oo ) |
|
| 61 | 60 | oveq1d | |- ( ( A = -oo /\ B e. RR* ) -> ( A +e B ) = ( -oo +e B ) ) |
| 62 | 60 | oveq2d | |- ( ( A = -oo /\ B e. RR* ) -> ( B +e A ) = ( B +e -oo ) ) |
| 63 | 59 61 62 | 3eqtr4d | |- ( ( A = -oo /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
| 64 | 33 49 63 | 3jaoian | |- ( ( ( A e. RR \/ A = +oo \/ A = -oo ) /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |
| 65 | 1 64 | sylanb | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e B ) = ( B +e A ) ) |