This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of posdif . (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xposdif | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> 0 < ( B +e -e A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnegcl | |- ( B e. RR* -> -e B e. RR* ) |
|
| 2 | xaddcl | |- ( ( A e. RR* /\ -e B e. RR* ) -> ( A +e -e B ) e. RR* ) |
|
| 3 | 1 2 | sylan2 | |- ( ( A e. RR* /\ B e. RR* ) -> ( A +e -e B ) e. RR* ) |
| 4 | xlt0neg1 | |- ( ( A +e -e B ) e. RR* -> ( ( A +e -e B ) < 0 <-> 0 < -e ( A +e -e B ) ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A +e -e B ) < 0 <-> 0 < -e ( A +e -e B ) ) ) |
| 6 | xsubge0 | |- ( ( A e. RR* /\ B e. RR* ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
|
| 7 | 6 | notbid | |- ( ( A e. RR* /\ B e. RR* ) -> ( -. 0 <_ ( A +e -e B ) <-> -. B <_ A ) ) |
| 8 | 0xr | |- 0 e. RR* |
|
| 9 | xrltnle | |- ( ( ( A +e -e B ) e. RR* /\ 0 e. RR* ) -> ( ( A +e -e B ) < 0 <-> -. 0 <_ ( A +e -e B ) ) ) |
|
| 10 | 3 8 9 | sylancl | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A +e -e B ) < 0 <-> -. 0 <_ ( A +e -e B ) ) ) |
| 11 | xrltnle | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) ) |
|
| 12 | 7 10 11 | 3bitr4d | |- ( ( A e. RR* /\ B e. RR* ) -> ( ( A +e -e B ) < 0 <-> A < B ) ) |
| 13 | xnegdi | |- ( ( A e. RR* /\ -e B e. RR* ) -> -e ( A +e -e B ) = ( -e A +e -e -e B ) ) |
|
| 14 | 1 13 | sylan2 | |- ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e -e B ) = ( -e A +e -e -e B ) ) |
| 15 | xnegneg | |- ( B e. RR* -> -e -e B = B ) |
|
| 16 | 15 | oveq2d | |- ( B e. RR* -> ( -e A +e -e -e B ) = ( -e A +e B ) ) |
| 17 | 16 | adantl | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A +e -e -e B ) = ( -e A +e B ) ) |
| 18 | xnegcl | |- ( A e. RR* -> -e A e. RR* ) |
|
| 19 | xaddcom | |- ( ( -e A e. RR* /\ B e. RR* ) -> ( -e A +e B ) = ( B +e -e A ) ) |
|
| 20 | 18 19 | sylan | |- ( ( A e. RR* /\ B e. RR* ) -> ( -e A +e B ) = ( B +e -e A ) ) |
| 21 | 14 17 20 | 3eqtrd | |- ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e -e B ) = ( B +e -e A ) ) |
| 22 | 21 | breq2d | |- ( ( A e. RR* /\ B e. RR* ) -> ( 0 < -e ( A +e -e B ) <-> 0 < ( B +e -e A ) ) ) |
| 23 | 5 12 22 | 3bitr3d | |- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> 0 < ( B +e -e A ) ) ) |