This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexsub | |- ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexneg | |- ( B e. RR -> -e B = -u B ) |
|
| 2 | 1 | adantl | |- ( ( A e. RR /\ B e. RR ) -> -e B = -u B ) |
| 3 | 2 | oveq2d | |- ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A +e -u B ) ) |
| 4 | renegcl | |- ( B e. RR -> -u B e. RR ) |
|
| 5 | rexadd | |- ( ( A e. RR /\ -u B e. RR ) -> ( A +e -u B ) = ( A + -u B ) ) |
|
| 6 | 4 5 | sylan2 | |- ( ( A e. RR /\ B e. RR ) -> ( A +e -u B ) = ( A + -u B ) ) |
| 7 | recn | |- ( A e. RR -> A e. CC ) |
|
| 8 | recn | |- ( B e. RR -> B e. CC ) |
|
| 9 | negsub | |- ( ( A e. CC /\ B e. CC ) -> ( A + -u B ) = ( A - B ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A + -u B ) = ( A - B ) ) |
| 11 | 3 6 10 | 3eqtrd | |- ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A - B ) ) |