This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009) (Proof shortened by JJ, 25-Aug-2021) (Proof shortened by Peter Mazsa, 6-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restidsing | |- ( _I |` { A } ) = ( { A } X. { A } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | |- Rel ( _I |` { A } ) |
|
| 2 | relxp | |- Rel ( { A } X. { A } ) |
|
| 3 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 4 | velsn | |- ( y e. { A } <-> y = A ) |
|
| 5 | 3 4 | anbi12i | |- ( ( x e. { A } /\ y e. { A } ) <-> ( x = A /\ y = A ) ) |
| 6 | vex | |- y e. _V |
|
| 7 | 6 | ideq | |- ( x _I y <-> x = y ) |
| 8 | 3 7 | anbi12i | |- ( ( x e. { A } /\ x _I y ) <-> ( x = A /\ x = y ) ) |
| 9 | eqeq1 | |- ( x = A -> ( x = y <-> A = y ) ) |
|
| 10 | eqcom | |- ( A = y <-> y = A ) |
|
| 11 | 9 10 | bitrdi | |- ( x = A -> ( x = y <-> y = A ) ) |
| 12 | 11 | pm5.32i | |- ( ( x = A /\ x = y ) <-> ( x = A /\ y = A ) ) |
| 13 | 8 12 | bitri | |- ( ( x e. { A } /\ x _I y ) <-> ( x = A /\ y = A ) ) |
| 14 | df-br | |- ( x _I y <-> <. x , y >. e. _I ) |
|
| 15 | 14 | anbi2i | |- ( ( x e. { A } /\ x _I y ) <-> ( x e. { A } /\ <. x , y >. e. _I ) ) |
| 16 | 5 13 15 | 3bitr2ri | |- ( ( x e. { A } /\ <. x , y >. e. _I ) <-> ( x e. { A } /\ y e. { A } ) ) |
| 17 | 6 | opelresi | |- ( <. x , y >. e. ( _I |` { A } ) <-> ( x e. { A } /\ <. x , y >. e. _I ) ) |
| 18 | opelxp | |- ( <. x , y >. e. ( { A } X. { A } ) <-> ( x e. { A } /\ y e. { A } ) ) |
|
| 19 | 16 17 18 | 3bitr4i | |- ( <. x , y >. e. ( _I |` { A } ) <-> <. x , y >. e. ( { A } X. { A } ) ) |
| 20 | 1 2 19 | eqrelriiv | |- ( _I |` { A } ) = ( { A } X. { A } ) |