This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The symmetric group on a singleton is the symmetric group S_1 consisting of the identity only. (Contributed by AV, 9-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symg1bas.1 | |- G = ( SymGrp ` A ) |
|
| symg1bas.2 | |- B = ( Base ` G ) |
||
| symg1bas.0 | |- A = { I } |
||
| Assertion | symg1bas | |- ( I e. V -> B = { { <. I , I >. } } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symg1bas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symg1bas.2 | |- B = ( Base ` G ) |
|
| 3 | symg1bas.0 | |- A = { I } |
|
| 4 | 1 2 | symgbas | |- B = { f | f : A -1-1-onto-> A } |
| 5 | eqidd | |- ( A = { I } -> p = p ) |
|
| 6 | id | |- ( A = { I } -> A = { I } ) |
|
| 7 | 5 6 6 | f1oeq123d | |- ( A = { I } -> ( p : A -1-1-onto-> A <-> p : { I } -1-1-onto-> { I } ) ) |
| 8 | 3 7 | ax-mp | |- ( p : A -1-1-onto-> A <-> p : { I } -1-1-onto-> { I } ) |
| 9 | f1of | |- ( p : { I } -1-1-onto-> { I } -> p : { I } --> { I } ) |
|
| 10 | fsng | |- ( ( I e. V /\ I e. V ) -> ( p : { I } --> { I } <-> p = { <. I , I >. } ) ) |
|
| 11 | 10 | anidms | |- ( I e. V -> ( p : { I } --> { I } <-> p = { <. I , I >. } ) ) |
| 12 | 9 11 | imbitrid | |- ( I e. V -> ( p : { I } -1-1-onto-> { I } -> p = { <. I , I >. } ) ) |
| 13 | f1osng | |- ( ( I e. V /\ I e. V ) -> { <. I , I >. } : { I } -1-1-onto-> { I } ) |
|
| 14 | 13 | anidms | |- ( I e. V -> { <. I , I >. } : { I } -1-1-onto-> { I } ) |
| 15 | f1oeq1 | |- ( p = { <. I , I >. } -> ( p : { I } -1-1-onto-> { I } <-> { <. I , I >. } : { I } -1-1-onto-> { I } ) ) |
|
| 16 | 14 15 | syl5ibrcom | |- ( I e. V -> ( p = { <. I , I >. } -> p : { I } -1-1-onto-> { I } ) ) |
| 17 | 12 16 | impbid | |- ( I e. V -> ( p : { I } -1-1-onto-> { I } <-> p = { <. I , I >. } ) ) |
| 18 | 8 17 | bitrid | |- ( I e. V -> ( p : A -1-1-onto-> A <-> p = { <. I , I >. } ) ) |
| 19 | vex | |- p e. _V |
|
| 20 | f1oeq1 | |- ( f = p -> ( f : A -1-1-onto-> A <-> p : A -1-1-onto-> A ) ) |
|
| 21 | 19 20 | elab | |- ( p e. { f | f : A -1-1-onto-> A } <-> p : A -1-1-onto-> A ) |
| 22 | velsn | |- ( p e. { { <. I , I >. } } <-> p = { <. I , I >. } ) |
|
| 23 | 18 21 22 | 3bitr4g | |- ( I e. V -> ( p e. { f | f : A -1-1-onto-> A } <-> p e. { { <. I , I >. } } ) ) |
| 24 | 23 | eqrdv | |- ( I e. V -> { f | f : A -1-1-onto-> A } = { { <. I , I >. } } ) |
| 25 | 4 24 | eqtrid | |- ( I e. V -> B = { { <. I , I >. } } ) |