This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by AV, 12-Apr-2019) (Proof shortened by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabsnif.f | |- ( x = A -> ( ph <-> ps ) ) |
|
| Assertion | rabsnif | |- { x e. { A } | ph } = if ( ps , { A } , (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnif.f | |- ( x = A -> ( ph <-> ps ) ) |
|
| 2 | rabsnifsb | |- { x e. { A } | ph } = if ( [. A / x ]. ph , { A } , (/) ) |
|
| 3 | 1 | sbcieg | |- ( A e. _V -> ( [. A / x ]. ph <-> ps ) ) |
| 4 | 3 | ifbid | |- ( A e. _V -> if ( [. A / x ]. ph , { A } , (/) ) = if ( ps , { A } , (/) ) ) |
| 5 | 2 4 | eqtrid | |- ( A e. _V -> { x e. { A } | ph } = if ( ps , { A } , (/) ) ) |
| 6 | rab0 | |- { x e. (/) | ph } = (/) |
|
| 7 | ifid | |- if ( ps , (/) , (/) ) = (/) |
|
| 8 | 6 7 | eqtr4i | |- { x e. (/) | ph } = if ( ps , (/) , (/) ) |
| 9 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 10 | 9 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
| 11 | 10 | rabeqdv | |- ( -. A e. _V -> { x e. { A } | ph } = { x e. (/) | ph } ) |
| 12 | 10 | ifeq1d | |- ( -. A e. _V -> if ( ps , { A } , (/) ) = if ( ps , (/) , (/) ) ) |
| 13 | 8 11 12 | 3eqtr4a | |- ( -. A e. _V -> { x e. { A } | ph } = if ( ps , { A } , (/) ) ) |
| 14 | 5 13 | pm2.61i | |- { x e. { A } | ph } = if ( ps , { A } , (/) ) |