This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matecl.a | |- A = ( N Mat R ) |
|
| matecl.k | |- K = ( Base ` R ) |
||
| Assertion | matecl | |- ( ( I e. N /\ J e. N /\ M e. ( Base ` A ) ) -> ( I M J ) e. K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matecl.a | |- A = ( N Mat R ) |
|
| 2 | matecl.k | |- K = ( Base ` R ) |
|
| 3 | eqid | |- ( Base ` A ) = ( Base ` A ) |
|
| 4 | 1 3 | matrcl | |- ( M e. ( Base ` A ) -> ( N e. Fin /\ R e. _V ) ) |
| 5 | 4 | 3ad2ant3 | |- ( ( I e. N /\ J e. N /\ M e. ( Base ` A ) ) -> ( N e. Fin /\ R e. _V ) ) |
| 6 | 1 2 | matbas2 | |- ( ( N e. Fin /\ R e. _V ) -> ( K ^m ( N X. N ) ) = ( Base ` A ) ) |
| 7 | 6 | eqcomd | |- ( ( N e. Fin /\ R e. _V ) -> ( Base ` A ) = ( K ^m ( N X. N ) ) ) |
| 8 | 7 | eleq2d | |- ( ( N e. Fin /\ R e. _V ) -> ( M e. ( Base ` A ) <-> M e. ( K ^m ( N X. N ) ) ) ) |
| 9 | 2 | fvexi | |- K e. _V |
| 10 | 9 | a1i | |- ( R e. _V -> K e. _V ) |
| 11 | sqxpexg | |- ( N e. Fin -> ( N X. N ) e. _V ) |
|
| 12 | elmapg | |- ( ( K e. _V /\ ( N X. N ) e. _V ) -> ( M e. ( K ^m ( N X. N ) ) <-> M : ( N X. N ) --> K ) ) |
|
| 13 | 10 11 12 | syl2anr | |- ( ( N e. Fin /\ R e. _V ) -> ( M e. ( K ^m ( N X. N ) ) <-> M : ( N X. N ) --> K ) ) |
| 14 | ffnov | |- ( M : ( N X. N ) --> K <-> ( M Fn ( N X. N ) /\ A. i e. N A. j e. N ( i M j ) e. K ) ) |
|
| 15 | oveq1 | |- ( i = I -> ( i M j ) = ( I M j ) ) |
|
| 16 | 15 | eleq1d | |- ( i = I -> ( ( i M j ) e. K <-> ( I M j ) e. K ) ) |
| 17 | oveq2 | |- ( j = J -> ( I M j ) = ( I M J ) ) |
|
| 18 | 17 | eleq1d | |- ( j = J -> ( ( I M j ) e. K <-> ( I M J ) e. K ) ) |
| 19 | 16 18 | rspc2v | |- ( ( I e. N /\ J e. N ) -> ( A. i e. N A. j e. N ( i M j ) e. K -> ( I M J ) e. K ) ) |
| 20 | 19 | com12 | |- ( A. i e. N A. j e. N ( i M j ) e. K -> ( ( I e. N /\ J e. N ) -> ( I M J ) e. K ) ) |
| 21 | 20 | adantl | |- ( ( M Fn ( N X. N ) /\ A. i e. N A. j e. N ( i M j ) e. K ) -> ( ( I e. N /\ J e. N ) -> ( I M J ) e. K ) ) |
| 22 | 21 | a1i | |- ( ( N e. Fin /\ R e. _V ) -> ( ( M Fn ( N X. N ) /\ A. i e. N A. j e. N ( i M j ) e. K ) -> ( ( I e. N /\ J e. N ) -> ( I M J ) e. K ) ) ) |
| 23 | 14 22 | biimtrid | |- ( ( N e. Fin /\ R e. _V ) -> ( M : ( N X. N ) --> K -> ( ( I e. N /\ J e. N ) -> ( I M J ) e. K ) ) ) |
| 24 | 13 23 | sylbid | |- ( ( N e. Fin /\ R e. _V ) -> ( M e. ( K ^m ( N X. N ) ) -> ( ( I e. N /\ J e. N ) -> ( I M J ) e. K ) ) ) |
| 25 | 8 24 | sylbid | |- ( ( N e. Fin /\ R e. _V ) -> ( M e. ( Base ` A ) -> ( ( I e. N /\ J e. N ) -> ( I M J ) e. K ) ) ) |
| 26 | 25 | com13 | |- ( ( I e. N /\ J e. N ) -> ( M e. ( Base ` A ) -> ( ( N e. Fin /\ R e. _V ) -> ( I M J ) e. K ) ) ) |
| 27 | 26 | ex | |- ( I e. N -> ( J e. N -> ( M e. ( Base ` A ) -> ( ( N e. Fin /\ R e. _V ) -> ( I M J ) e. K ) ) ) ) |
| 28 | 27 | 3imp1 | |- ( ( ( I e. N /\ J e. N /\ M e. ( Base ` A ) ) /\ ( N e. Fin /\ R e. _V ) ) -> ( I M J ) e. K ) |
| 29 | 5 28 | mpdan | |- ( ( I e. N /\ J e. N /\ M e. ( Base ` A ) ) -> ( I M J ) e. K ) |