This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is the identity iff it moves no points. (Contributed by Stefan O'Rear, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnnfpeq0 | |- ( F Fn A -> ( dom ( F \ _I ) = (/) <-> F = ( _I |` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0 | |- ( { x e. A | ( F ` x ) =/= x } = (/) <-> A. x e. A -. ( F ` x ) =/= x ) |
|
| 2 | nne | |- ( -. ( F ` x ) =/= x <-> ( F ` x ) = x ) |
|
| 3 | fvresi | |- ( x e. A -> ( ( _I |` A ) ` x ) = x ) |
|
| 4 | 3 | eqeq2d | |- ( x e. A -> ( ( F ` x ) = ( ( _I |` A ) ` x ) <-> ( F ` x ) = x ) ) |
| 5 | 4 | adantl | |- ( ( F Fn A /\ x e. A ) -> ( ( F ` x ) = ( ( _I |` A ) ` x ) <-> ( F ` x ) = x ) ) |
| 6 | 2 5 | bitr4id | |- ( ( F Fn A /\ x e. A ) -> ( -. ( F ` x ) =/= x <-> ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
| 7 | 6 | ralbidva | |- ( F Fn A -> ( A. x e. A -. ( F ` x ) =/= x <-> A. x e. A ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
| 8 | 1 7 | bitrid | |- ( F Fn A -> ( { x e. A | ( F ` x ) =/= x } = (/) <-> A. x e. A ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
| 9 | fndifnfp | |- ( F Fn A -> dom ( F \ _I ) = { x e. A | ( F ` x ) =/= x } ) |
|
| 10 | 9 | eqeq1d | |- ( F Fn A -> ( dom ( F \ _I ) = (/) <-> { x e. A | ( F ` x ) =/= x } = (/) ) ) |
| 11 | fnresi | |- ( _I |` A ) Fn A |
|
| 12 | eqfnfv | |- ( ( F Fn A /\ ( _I |` A ) Fn A ) -> ( F = ( _I |` A ) <-> A. x e. A ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
|
| 13 | 11 12 | mpan2 | |- ( F Fn A -> ( F = ( _I |` A ) <-> A. x e. A ( F ` x ) = ( ( _I |` A ) ` x ) ) ) |
| 14 | 8 10 13 | 3bitr4d | |- ( F Fn A -> ( dom ( F \ _I ) = (/) <-> F = ( _I |` A ) ) ) |