This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Nonnegative integer exponentiation of a product. Proposition 10-4.2(c) of Gleason p. 135, restricted to nonnegative integer exponents. (Contributed by NM, 13-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulexp | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( j = 0 -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ 0 ) ) |
|
| 2 | oveq2 | |- ( j = 0 -> ( A ^ j ) = ( A ^ 0 ) ) |
|
| 3 | oveq2 | |- ( j = 0 -> ( B ^ j ) = ( B ^ 0 ) ) |
|
| 4 | 2 3 | oveq12d | |- ( j = 0 -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) |
| 5 | 1 4 | eqeq12d | |- ( j = 0 -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ 0 ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) |
| 6 | 5 | imbi2d | |- ( j = 0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 0 ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) ) ) |
| 7 | oveq2 | |- ( j = k -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ k ) ) |
|
| 8 | oveq2 | |- ( j = k -> ( A ^ j ) = ( A ^ k ) ) |
|
| 9 | oveq2 | |- ( j = k -> ( B ^ j ) = ( B ^ k ) ) |
|
| 10 | 8 9 | oveq12d | |- ( j = k -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ k ) x. ( B ^ k ) ) ) |
| 11 | 7 10 | eqeq12d | |- ( j = k -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) ) |
| 12 | 11 | imbi2d | |- ( j = k -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) ) ) |
| 13 | oveq2 | |- ( j = ( k + 1 ) -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ ( k + 1 ) ) ) |
|
| 14 | oveq2 | |- ( j = ( k + 1 ) -> ( A ^ j ) = ( A ^ ( k + 1 ) ) ) |
|
| 15 | oveq2 | |- ( j = ( k + 1 ) -> ( B ^ j ) = ( B ^ ( k + 1 ) ) ) |
|
| 16 | 14 15 | oveq12d | |- ( j = ( k + 1 ) -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
| 17 | 13 16 | eqeq12d | |- ( j = ( k + 1 ) -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) |
| 18 | 17 | imbi2d | |- ( j = ( k + 1 ) -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
| 19 | oveq2 | |- ( j = N -> ( ( A x. B ) ^ j ) = ( ( A x. B ) ^ N ) ) |
|
| 20 | oveq2 | |- ( j = N -> ( A ^ j ) = ( A ^ N ) ) |
|
| 21 | oveq2 | |- ( j = N -> ( B ^ j ) = ( B ^ N ) ) |
|
| 22 | 20 21 | oveq12d | |- ( j = N -> ( ( A ^ j ) x. ( B ^ j ) ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |
| 23 | 19 22 | eqeq12d | |- ( j = N -> ( ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) <-> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) |
| 24 | 23 | imbi2d | |- ( j = N -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ j ) = ( ( A ^ j ) x. ( B ^ j ) ) ) <-> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) ) |
| 25 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 26 | exp0 | |- ( ( A x. B ) e. CC -> ( ( A x. B ) ^ 0 ) = 1 ) |
|
| 27 | 25 26 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 0 ) = 1 ) |
| 28 | exp0 | |- ( A e. CC -> ( A ^ 0 ) = 1 ) |
|
| 29 | exp0 | |- ( B e. CC -> ( B ^ 0 ) = 1 ) |
|
| 30 | 28 29 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = ( 1 x. 1 ) ) |
| 31 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 32 | 30 31 | eqtrdi | |- ( ( A e. CC /\ B e. CC ) -> ( ( A ^ 0 ) x. ( B ^ 0 ) ) = 1 ) |
| 33 | 27 32 | eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ 0 ) = ( ( A ^ 0 ) x. ( B ^ 0 ) ) ) |
| 34 | expp1 | |- ( ( ( A x. B ) e. CC /\ k e. NN0 ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) ) |
|
| 35 | 25 34 | sylan | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) ) |
| 36 | 35 | adantr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) ) |
| 37 | oveq1 | |- ( ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) -> ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) = ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) ) |
|
| 38 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 39 | expcl | |- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ k ) e. CC ) |
|
| 40 | 38 39 | anim12i | |- ( ( ( A e. CC /\ k e. NN0 ) /\ ( B e. CC /\ k e. NN0 ) ) -> ( ( A ^ k ) e. CC /\ ( B ^ k ) e. CC ) ) |
| 41 | 40 | anandirs | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^ k ) e. CC /\ ( B ^ k ) e. CC ) ) |
| 42 | simpl | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( A e. CC /\ B e. CC ) ) |
|
| 43 | mul4 | |- ( ( ( ( A ^ k ) e. CC /\ ( B ^ k ) e. CC ) /\ ( A e. CC /\ B e. CC ) ) -> ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) = ( ( ( A ^ k ) x. A ) x. ( ( B ^ k ) x. B ) ) ) |
|
| 44 | 41 42 43 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) = ( ( ( A ^ k ) x. A ) x. ( ( B ^ k ) x. B ) ) ) |
| 45 | expp1 | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
|
| 46 | 45 | adantlr | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( A ^ ( k + 1 ) ) = ( ( A ^ k ) x. A ) ) |
| 47 | expp1 | |- ( ( B e. CC /\ k e. NN0 ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
|
| 48 | 47 | adantll | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( B ^ ( k + 1 ) ) = ( ( B ^ k ) x. B ) ) |
| 49 | 46 48 | oveq12d | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) = ( ( ( A ^ k ) x. A ) x. ( ( B ^ k ) x. B ) ) ) |
| 50 | 44 49 | eqtr4d | |- ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) -> ( ( ( A ^ k ) x. ( B ^ k ) ) x. ( A x. B ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
| 51 | 37 50 | sylan9eqr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( ( A x. B ) ^ k ) x. ( A x. B ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
| 52 | 36 51 | eqtrd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ k e. NN0 ) /\ ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) |
| 53 | 52 | exp31 | |- ( ( A e. CC /\ B e. CC ) -> ( k e. NN0 -> ( ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
| 54 | 53 | com12 | |- ( k e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
| 55 | 54 | a2d | |- ( k e. NN0 -> ( ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ k ) = ( ( A ^ k ) x. ( B ^ k ) ) ) -> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ ( k + 1 ) ) = ( ( A ^ ( k + 1 ) ) x. ( B ^ ( k + 1 ) ) ) ) ) ) |
| 56 | 6 12 18 24 33 55 | nn0ind | |- ( N e. NN0 -> ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) |
| 57 | 56 | expdcom | |- ( A e. CC -> ( B e. CC -> ( N e. NN0 -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) ) ) |
| 58 | 57 | 3imp | |- ( ( A e. CC /\ B e. CC /\ N e. NN0 ) -> ( ( A x. B ) ^ N ) = ( ( A ^ N ) x. ( B ^ N ) ) ) |