This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| Assertion | limsupgle | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( G ` C ) <_ A <-> A. j e. B ( C <_ j -> ( F ` j ) <_ A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 2 | 1 | limsupgval | |- ( C e. RR -> ( G ` C ) = sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 3 | 2 | 3ad2ant2 | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( G ` C ) = sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 4 | 3 | breq1d | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( G ` C ) <_ A <-> sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) <_ A ) ) |
| 5 | inss2 | |- ( ( F " ( C [,) +oo ) ) i^i RR* ) C_ RR* |
|
| 6 | simp3 | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> A e. RR* ) |
|
| 7 | supxrleub | |- ( ( ( ( F " ( C [,) +oo ) ) i^i RR* ) C_ RR* /\ A e. RR* ) -> ( sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) <_ A <-> A. x e. ( ( F " ( C [,) +oo ) ) i^i RR* ) x <_ A ) ) |
|
| 8 | 5 6 7 | sylancr | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) <_ A <-> A. x e. ( ( F " ( C [,) +oo ) ) i^i RR* ) x <_ A ) ) |
| 9 | imassrn | |- ( F " ( C [,) +oo ) ) C_ ran F |
|
| 10 | simp1r | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> F : B --> RR* ) |
|
| 11 | 10 | frnd | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ran F C_ RR* ) |
| 12 | 9 11 | sstrid | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( F " ( C [,) +oo ) ) C_ RR* ) |
| 13 | dfss2 | |- ( ( F " ( C [,) +oo ) ) C_ RR* <-> ( ( F " ( C [,) +oo ) ) i^i RR* ) = ( F " ( C [,) +oo ) ) ) |
|
| 14 | 12 13 | sylib | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( F " ( C [,) +oo ) ) i^i RR* ) = ( F " ( C [,) +oo ) ) ) |
| 15 | imadmres | |- ( F " dom ( F |` ( C [,) +oo ) ) ) = ( F " ( C [,) +oo ) ) |
|
| 16 | 14 15 | eqtr4di | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( F " ( C [,) +oo ) ) i^i RR* ) = ( F " dom ( F |` ( C [,) +oo ) ) ) ) |
| 17 | 16 | raleqdv | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( A. x e. ( ( F " ( C [,) +oo ) ) i^i RR* ) x <_ A <-> A. x e. ( F " dom ( F |` ( C [,) +oo ) ) ) x <_ A ) ) |
| 18 | 10 | ffnd | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> F Fn B ) |
| 19 | 10 | fdmd | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> dom F = B ) |
| 20 | 19 | ineq2d | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( C [,) +oo ) i^i dom F ) = ( ( C [,) +oo ) i^i B ) ) |
| 21 | dmres | |- dom ( F |` ( C [,) +oo ) ) = ( ( C [,) +oo ) i^i dom F ) |
|
| 22 | incom | |- ( B i^i ( C [,) +oo ) ) = ( ( C [,) +oo ) i^i B ) |
|
| 23 | 20 21 22 | 3eqtr4g | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> dom ( F |` ( C [,) +oo ) ) = ( B i^i ( C [,) +oo ) ) ) |
| 24 | inss1 | |- ( B i^i ( C [,) +oo ) ) C_ B |
|
| 25 | 23 24 | eqsstrdi | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> dom ( F |` ( C [,) +oo ) ) C_ B ) |
| 26 | breq1 | |- ( x = ( F ` j ) -> ( x <_ A <-> ( F ` j ) <_ A ) ) |
|
| 27 | 26 | ralima | |- ( ( F Fn B /\ dom ( F |` ( C [,) +oo ) ) C_ B ) -> ( A. x e. ( F " dom ( F |` ( C [,) +oo ) ) ) x <_ A <-> A. j e. dom ( F |` ( C [,) +oo ) ) ( F ` j ) <_ A ) ) |
| 28 | 18 25 27 | syl2anc | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( A. x e. ( F " dom ( F |` ( C [,) +oo ) ) ) x <_ A <-> A. j e. dom ( F |` ( C [,) +oo ) ) ( F ` j ) <_ A ) ) |
| 29 | 23 | eleq2d | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( j e. dom ( F |` ( C [,) +oo ) ) <-> j e. ( B i^i ( C [,) +oo ) ) ) ) |
| 30 | elin | |- ( j e. ( B i^i ( C [,) +oo ) ) <-> ( j e. B /\ j e. ( C [,) +oo ) ) ) |
|
| 31 | 29 30 | bitrdi | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( j e. dom ( F |` ( C [,) +oo ) ) <-> ( j e. B /\ j e. ( C [,) +oo ) ) ) ) |
| 32 | simpl2 | |- ( ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) /\ j e. B ) -> C e. RR ) |
|
| 33 | simp1l | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> B C_ RR ) |
|
| 34 | 33 | sselda | |- ( ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) /\ j e. B ) -> j e. RR ) |
| 35 | elicopnf | |- ( C e. RR -> ( j e. ( C [,) +oo ) <-> ( j e. RR /\ C <_ j ) ) ) |
|
| 36 | 35 | baibd | |- ( ( C e. RR /\ j e. RR ) -> ( j e. ( C [,) +oo ) <-> C <_ j ) ) |
| 37 | 32 34 36 | syl2anc | |- ( ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) /\ j e. B ) -> ( j e. ( C [,) +oo ) <-> C <_ j ) ) |
| 38 | 37 | pm5.32da | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( j e. B /\ j e. ( C [,) +oo ) ) <-> ( j e. B /\ C <_ j ) ) ) |
| 39 | 31 38 | bitrd | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( j e. dom ( F |` ( C [,) +oo ) ) <-> ( j e. B /\ C <_ j ) ) ) |
| 40 | 39 | imbi1d | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( j e. dom ( F |` ( C [,) +oo ) ) -> ( F ` j ) <_ A ) <-> ( ( j e. B /\ C <_ j ) -> ( F ` j ) <_ A ) ) ) |
| 41 | impexp | |- ( ( ( j e. B /\ C <_ j ) -> ( F ` j ) <_ A ) <-> ( j e. B -> ( C <_ j -> ( F ` j ) <_ A ) ) ) |
|
| 42 | 40 41 | bitrdi | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( j e. dom ( F |` ( C [,) +oo ) ) -> ( F ` j ) <_ A ) <-> ( j e. B -> ( C <_ j -> ( F ` j ) <_ A ) ) ) ) |
| 43 | 42 | ralbidv2 | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( A. j e. dom ( F |` ( C [,) +oo ) ) ( F ` j ) <_ A <-> A. j e. B ( C <_ j -> ( F ` j ) <_ A ) ) ) |
| 44 | 17 28 43 | 3bitrd | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( A. x e. ( ( F " ( C [,) +oo ) ) i^i RR* ) x <_ A <-> A. j e. B ( C <_ j -> ( F ` j ) <_ A ) ) ) |
| 45 | 4 8 44 | 3bitrd | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( G ` C ) <_ A <-> A. j e. B ( C <_ j -> ( F ` j ) <_ A ) ) ) |