This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| Assertion | limsuplt | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( ( limsup ` F ) < A <-> E. j e. RR ( G ` j ) < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 2 | 1 | limsuple | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( A <_ ( limsup ` F ) <-> A. j e. RR A <_ ( G ` j ) ) ) |
| 3 | 2 | notbid | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( -. A <_ ( limsup ` F ) <-> -. A. j e. RR A <_ ( G ` j ) ) ) |
| 4 | rexnal | |- ( E. j e. RR -. A <_ ( G ` j ) <-> -. A. j e. RR A <_ ( G ` j ) ) |
|
| 5 | 3 4 | bitr4di | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( -. A <_ ( limsup ` F ) <-> E. j e. RR -. A <_ ( G ` j ) ) ) |
| 6 | simp2 | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> F : B --> RR* ) |
|
| 7 | reex | |- RR e. _V |
|
| 8 | 7 | ssex | |- ( B C_ RR -> B e. _V ) |
| 9 | 8 | 3ad2ant1 | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> B e. _V ) |
| 10 | xrex | |- RR* e. _V |
|
| 11 | 10 | a1i | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> RR* e. _V ) |
| 12 | fex2 | |- ( ( F : B --> RR* /\ B e. _V /\ RR* e. _V ) -> F e. _V ) |
|
| 13 | 6 9 11 12 | syl3anc | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> F e. _V ) |
| 14 | limsupcl | |- ( F e. _V -> ( limsup ` F ) e. RR* ) |
|
| 15 | 13 14 | syl | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( limsup ` F ) e. RR* ) |
| 16 | simp3 | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> A e. RR* ) |
|
| 17 | xrltnle | |- ( ( ( limsup ` F ) e. RR* /\ A e. RR* ) -> ( ( limsup ` F ) < A <-> -. A <_ ( limsup ` F ) ) ) |
|
| 18 | 15 16 17 | syl2anc | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( ( limsup ` F ) < A <-> -. A <_ ( limsup ` F ) ) ) |
| 19 | 1 | limsupgf | |- G : RR --> RR* |
| 20 | 19 | ffvelcdmi | |- ( j e. RR -> ( G ` j ) e. RR* ) |
| 21 | xrltnle | |- ( ( ( G ` j ) e. RR* /\ A e. RR* ) -> ( ( G ` j ) < A <-> -. A <_ ( G ` j ) ) ) |
|
| 22 | 20 16 21 | syl2anr | |- ( ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) /\ j e. RR ) -> ( ( G ` j ) < A <-> -. A <_ ( G ` j ) ) ) |
| 23 | 22 | rexbidva | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( E. j e. RR ( G ` j ) < A <-> E. j e. RR -. A <_ ( G ` j ) ) ) |
| 24 | 5 18 23 | 3bitr4d | |- ( ( B C_ RR /\ F : B --> RR* /\ A e. RR* ) -> ( ( limsup ` F ) < A <-> E. j e. RR ( G ` j ) < A ) ) |