This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| Assertion | limsupgval | |- ( M e. RR -> ( G ` M ) = sup ( ( ( F " ( M [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 2 | oveq1 | |- ( k = M -> ( k [,) +oo ) = ( M [,) +oo ) ) |
|
| 3 | 2 | imaeq2d | |- ( k = M -> ( F " ( k [,) +oo ) ) = ( F " ( M [,) +oo ) ) ) |
| 4 | 3 | ineq1d | |- ( k = M -> ( ( F " ( k [,) +oo ) ) i^i RR* ) = ( ( F " ( M [,) +oo ) ) i^i RR* ) ) |
| 5 | 4 | supeq1d | |- ( k = M -> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) = sup ( ( ( F " ( M [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 6 | xrltso | |- < Or RR* |
|
| 7 | 6 | supex | |- sup ( ( ( F " ( M [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V |
| 8 | 5 1 7 | fvmpt | |- ( M e. RR -> ( G ` M ) = sup ( ( ( F " ( M [,) +oo ) ) i^i RR* ) , RR* , < ) ) |