This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a sequence is eventually at most A , then the limsup is also at most A . (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / n which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limsupbnd.1 | |- ( ph -> B C_ RR ) |
|
| limsupbnd.2 | |- ( ph -> F : B --> RR* ) |
||
| limsupbnd.3 | |- ( ph -> A e. RR* ) |
||
| limsupbnd1.4 | |- ( ph -> E. k e. RR A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) |
||
| Assertion | limsupbnd1 | |- ( ph -> ( limsup ` F ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupbnd.1 | |- ( ph -> B C_ RR ) |
|
| 2 | limsupbnd.2 | |- ( ph -> F : B --> RR* ) |
|
| 3 | limsupbnd.3 | |- ( ph -> A e. RR* ) |
|
| 4 | limsupbnd1.4 | |- ( ph -> E. k e. RR A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) |
|
| 5 | 1 | adantr | |- ( ( ph /\ k e. RR ) -> B C_ RR ) |
| 6 | 2 | adantr | |- ( ( ph /\ k e. RR ) -> F : B --> RR* ) |
| 7 | simpr | |- ( ( ph /\ k e. RR ) -> k e. RR ) |
|
| 8 | 3 | adantr | |- ( ( ph /\ k e. RR ) -> A e. RR* ) |
| 9 | eqid | |- ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 10 | 9 | limsupgle | |- ( ( ( B C_ RR /\ F : B --> RR* ) /\ k e. RR /\ A e. RR* ) -> ( ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A <-> A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) ) |
| 11 | 5 6 7 8 10 | syl211anc | |- ( ( ph /\ k e. RR ) -> ( ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A <-> A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) ) |
| 12 | reex | |- RR e. _V |
|
| 13 | 12 | ssex | |- ( B C_ RR -> B e. _V ) |
| 14 | 1 13 | syl | |- ( ph -> B e. _V ) |
| 15 | xrex | |- RR* e. _V |
|
| 16 | 15 | a1i | |- ( ph -> RR* e. _V ) |
| 17 | fex2 | |- ( ( F : B --> RR* /\ B e. _V /\ RR* e. _V ) -> F e. _V ) |
|
| 18 | 2 14 16 17 | syl3anc | |- ( ph -> F e. _V ) |
| 19 | limsupcl | |- ( F e. _V -> ( limsup ` F ) e. RR* ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( limsup ` F ) e. RR* ) |
| 21 | 20 | xrleidd | |- ( ph -> ( limsup ` F ) <_ ( limsup ` F ) ) |
| 22 | 9 | limsuple | |- ( ( B C_ RR /\ F : B --> RR* /\ ( limsup ` F ) e. RR* ) -> ( ( limsup ` F ) <_ ( limsup ` F ) <-> A. k e. RR ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) ) |
| 23 | 1 2 20 22 | syl3anc | |- ( ph -> ( ( limsup ` F ) <_ ( limsup ` F ) <-> A. k e. RR ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) ) |
| 24 | 21 23 | mpbid | |- ( ph -> A. k e. RR ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) |
| 25 | 24 | r19.21bi | |- ( ( ph /\ k e. RR ) -> ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) |
| 26 | 20 | adantr | |- ( ( ph /\ k e. RR ) -> ( limsup ` F ) e. RR* ) |
| 27 | 9 | limsupgf | |- ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) : RR --> RR* |
| 28 | 27 | a1i | |- ( ph -> ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) : RR --> RR* ) |
| 29 | 28 | ffvelcdmda | |- ( ( ph /\ k e. RR ) -> ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) e. RR* ) |
| 30 | xrletr | |- ( ( ( limsup ` F ) e. RR* /\ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) e. RR* /\ A e. RR* ) -> ( ( ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) /\ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
|
| 31 | 26 29 8 30 | syl3anc | |- ( ( ph /\ k e. RR ) -> ( ( ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) /\ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
| 32 | 25 31 | mpand | |- ( ( ph /\ k e. RR ) -> ( ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A -> ( limsup ` F ) <_ A ) ) |
| 33 | 11 32 | sylbird | |- ( ( ph /\ k e. RR ) -> ( A. j e. B ( k <_ j -> ( F ` j ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
| 34 | 33 | rexlimdva | |- ( ph -> ( E. k e. RR A. j e. B ( k <_ j -> ( F ` j ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
| 35 | 4 34 | mpd | |- ( ph -> ( limsup ` F ) <_ A ) |