This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any open set is saturated with respect to the topological indistinguishability map (in the terminology of qtoprest ). (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| Assertion | kqsat | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( `' F " ( F " U ) ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | 1 | kqffn | |- ( J e. ( TopOn ` X ) -> F Fn X ) |
| 3 | elpreima | |- ( F Fn X -> ( z e. ( `' F " ( F " U ) ) <-> ( z e. X /\ ( F ` z ) e. ( F " U ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( J e. ( TopOn ` X ) -> ( z e. ( `' F " ( F " U ) ) <-> ( z e. X /\ ( F ` z ) e. ( F " U ) ) ) ) |
| 5 | 4 | adantr | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( z e. ( `' F " ( F " U ) ) <-> ( z e. X /\ ( F ` z ) e. ( F " U ) ) ) ) |
| 6 | 1 | kqfvima | |- ( ( J e. ( TopOn ` X ) /\ U e. J /\ z e. X ) -> ( z e. U <-> ( F ` z ) e. ( F " U ) ) ) |
| 7 | 6 | 3expa | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ z e. X ) -> ( z e. U <-> ( F ` z ) e. ( F " U ) ) ) |
| 8 | 7 | biimprd | |- ( ( ( J e. ( TopOn ` X ) /\ U e. J ) /\ z e. X ) -> ( ( F ` z ) e. ( F " U ) -> z e. U ) ) |
| 9 | 8 | expimpd | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( z e. X /\ ( F ` z ) e. ( F " U ) ) -> z e. U ) ) |
| 10 | 5 9 | sylbid | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( z e. ( `' F " ( F " U ) ) -> z e. U ) ) |
| 11 | 10 | ssrdv | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( `' F " ( F " U ) ) C_ U ) |
| 12 | toponss | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> U C_ X ) |
|
| 13 | 2 | fndmd | |- ( J e. ( TopOn ` X ) -> dom F = X ) |
| 14 | 13 | adantr | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> dom F = X ) |
| 15 | 12 14 | sseqtrrd | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> U C_ dom F ) |
| 16 | sseqin2 | |- ( U C_ dom F <-> ( dom F i^i U ) = U ) |
|
| 17 | 15 16 | sylib | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( dom F i^i U ) = U ) |
| 18 | dminss | |- ( dom F i^i U ) C_ ( `' F " ( F " U ) ) |
|
| 19 | 17 18 | eqsstrrdi | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> U C_ ( `' F " ( F " U ) ) ) |
| 20 | 11 19 | eqssd | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( `' F " ( F " U ) ) = U ) |