This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007) (Revised by Mario Carneiro, 21-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnclima | |- ( ( F e. ( J Cn K ) /\ A e. ( Clsd ` K ) ) -> ( `' F " A ) e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | eqid | |- U. K = U. K |
|
| 3 | 1 2 | cnf | |- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
| 4 | 3 | adantr | |- ( ( F e. ( J Cn K ) /\ A e. ( Clsd ` K ) ) -> F : U. J --> U. K ) |
| 5 | ffun | |- ( F : U. J --> U. K -> Fun F ) |
|
| 6 | funcnvcnv | |- ( Fun F -> Fun `' `' F ) |
|
| 7 | imadif | |- ( Fun `' `' F -> ( `' F " ( U. K \ A ) ) = ( ( `' F " U. K ) \ ( `' F " A ) ) ) |
|
| 8 | 5 6 7 | 3syl | |- ( F : U. J --> U. K -> ( `' F " ( U. K \ A ) ) = ( ( `' F " U. K ) \ ( `' F " A ) ) ) |
| 9 | fimacnv | |- ( F : U. J --> U. K -> ( `' F " U. K ) = U. J ) |
|
| 10 | 9 | difeq1d | |- ( F : U. J --> U. K -> ( ( `' F " U. K ) \ ( `' F " A ) ) = ( U. J \ ( `' F " A ) ) ) |
| 11 | 8 10 | eqtr2d | |- ( F : U. J --> U. K -> ( U. J \ ( `' F " A ) ) = ( `' F " ( U. K \ A ) ) ) |
| 12 | 4 11 | syl | |- ( ( F e. ( J Cn K ) /\ A e. ( Clsd ` K ) ) -> ( U. J \ ( `' F " A ) ) = ( `' F " ( U. K \ A ) ) ) |
| 13 | 2 | cldopn | |- ( A e. ( Clsd ` K ) -> ( U. K \ A ) e. K ) |
| 14 | cnima | |- ( ( F e. ( J Cn K ) /\ ( U. K \ A ) e. K ) -> ( `' F " ( U. K \ A ) ) e. J ) |
|
| 15 | 13 14 | sylan2 | |- ( ( F e. ( J Cn K ) /\ A e. ( Clsd ` K ) ) -> ( `' F " ( U. K \ A ) ) e. J ) |
| 16 | 12 15 | eqeltrd | |- ( ( F e. ( J Cn K ) /\ A e. ( Clsd ` K ) ) -> ( U. J \ ( `' F " A ) ) e. J ) |
| 17 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 18 | cnvimass | |- ( `' F " A ) C_ dom F |
|
| 19 | 18 4 | fssdm | |- ( ( F e. ( J Cn K ) /\ A e. ( Clsd ` K ) ) -> ( `' F " A ) C_ U. J ) |
| 20 | 1 | iscld2 | |- ( ( J e. Top /\ ( `' F " A ) C_ U. J ) -> ( ( `' F " A ) e. ( Clsd ` J ) <-> ( U. J \ ( `' F " A ) ) e. J ) ) |
| 21 | 17 19 20 | syl2an2r | |- ( ( F e. ( J Cn K ) /\ A e. ( Clsd ` K ) ) -> ( ( `' F " A ) e. ( Clsd ` J ) <-> ( U. J \ ( `' F " A ) ) e. J ) ) |
| 22 | 16 21 | mpbird | |- ( ( F e. ( J Cn K ) /\ A e. ( Clsd ` K ) ) -> ( `' F " A ) e. ( Clsd ` J ) ) |