This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a normal space, given a closed set B inside an open set A , there is an open set x such that B C_ x C_ cls ( x ) C_ A . (Contributed by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrmsep3 | |- ( ( J e. Nrm /\ ( A e. J /\ B e. ( Clsd ` J ) /\ B C_ A ) ) -> E. x e. J ( B C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnrm | |- ( J e. Nrm <-> ( J e. Top /\ A. y e. J A. z e. ( ( Clsd ` J ) i^i ~P y ) E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ y ) ) ) |
|
| 2 | pweq | |- ( y = A -> ~P y = ~P A ) |
|
| 3 | 2 | ineq2d | |- ( y = A -> ( ( Clsd ` J ) i^i ~P y ) = ( ( Clsd ` J ) i^i ~P A ) ) |
| 4 | sseq2 | |- ( y = A -> ( ( ( cls ` J ) ` x ) C_ y <-> ( ( cls ` J ) ` x ) C_ A ) ) |
|
| 5 | 4 | anbi2d | |- ( y = A -> ( ( z C_ x /\ ( ( cls ` J ) ` x ) C_ y ) <-> ( z C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) |
| 6 | 5 | rexbidv | |- ( y = A -> ( E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ y ) <-> E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) |
| 7 | 3 6 | raleqbidv | |- ( y = A -> ( A. z e. ( ( Clsd ` J ) i^i ~P y ) E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ y ) <-> A. z e. ( ( Clsd ` J ) i^i ~P A ) E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) |
| 8 | 7 | rspccv | |- ( A. y e. J A. z e. ( ( Clsd ` J ) i^i ~P y ) E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ y ) -> ( A e. J -> A. z e. ( ( Clsd ` J ) i^i ~P A ) E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) |
| 9 | 1 8 | simplbiim | |- ( J e. Nrm -> ( A e. J -> A. z e. ( ( Clsd ` J ) i^i ~P A ) E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) |
| 10 | elin | |- ( B e. ( ( Clsd ` J ) i^i ~P A ) <-> ( B e. ( Clsd ` J ) /\ B e. ~P A ) ) |
|
| 11 | elpwg | |- ( B e. ( Clsd ` J ) -> ( B e. ~P A <-> B C_ A ) ) |
|
| 12 | 11 | pm5.32i | |- ( ( B e. ( Clsd ` J ) /\ B e. ~P A ) <-> ( B e. ( Clsd ` J ) /\ B C_ A ) ) |
| 13 | 10 12 | bitri | |- ( B e. ( ( Clsd ` J ) i^i ~P A ) <-> ( B e. ( Clsd ` J ) /\ B C_ A ) ) |
| 14 | cleq1lem | |- ( z = B -> ( ( z C_ x /\ ( ( cls ` J ) ` x ) C_ A ) <-> ( B C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) |
|
| 15 | 14 | rexbidv | |- ( z = B -> ( E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ A ) <-> E. x e. J ( B C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) |
| 16 | 15 | rspccv | |- ( A. z e. ( ( Clsd ` J ) i^i ~P A ) E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ A ) -> ( B e. ( ( Clsd ` J ) i^i ~P A ) -> E. x e. J ( B C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) |
| 17 | 13 16 | biimtrrid | |- ( A. z e. ( ( Clsd ` J ) i^i ~P A ) E. x e. J ( z C_ x /\ ( ( cls ` J ) ` x ) C_ A ) -> ( ( B e. ( Clsd ` J ) /\ B C_ A ) -> E. x e. J ( B C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) |
| 18 | 9 17 | syl6 | |- ( J e. Nrm -> ( A e. J -> ( ( B e. ( Clsd ` J ) /\ B C_ A ) -> E. x e. J ( B C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) ) |
| 19 | 18 | exp4a | |- ( J e. Nrm -> ( A e. J -> ( B e. ( Clsd ` J ) -> ( B C_ A -> E. x e. J ( B C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) ) ) ) |
| 20 | 19 | 3imp2 | |- ( ( J e. Nrm /\ ( A e. J /\ B e. ( Clsd ` J ) /\ B C_ A ) ) -> E. x e. J ( B C_ x /\ ( ( cls ` J ) ` x ) C_ A ) ) |