This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a normal space." Much like the case for regular spaces, normal does not imply Hausdorff or even regular. (Contributed by Jeff Hankins, 1-Feb-2010) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isnrm | |- ( J e. Nrm <-> ( J e. Top /\ A. x e. J A. y e. ( ( Clsd ` J ) i^i ~P x ) E. z e. J ( y C_ z /\ ( ( cls ` J ) ` z ) C_ x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( j = J -> ( Clsd ` j ) = ( Clsd ` J ) ) |
|
| 2 | 1 | ineq1d | |- ( j = J -> ( ( Clsd ` j ) i^i ~P x ) = ( ( Clsd ` J ) i^i ~P x ) ) |
| 3 | fveq2 | |- ( j = J -> ( cls ` j ) = ( cls ` J ) ) |
|
| 4 | 3 | fveq1d | |- ( j = J -> ( ( cls ` j ) ` z ) = ( ( cls ` J ) ` z ) ) |
| 5 | 4 | sseq1d | |- ( j = J -> ( ( ( cls ` j ) ` z ) C_ x <-> ( ( cls ` J ) ` z ) C_ x ) ) |
| 6 | 5 | anbi2d | |- ( j = J -> ( ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) <-> ( y C_ z /\ ( ( cls ` J ) ` z ) C_ x ) ) ) |
| 7 | 6 | rexeqbi1dv | |- ( j = J -> ( E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) <-> E. z e. J ( y C_ z /\ ( ( cls ` J ) ` z ) C_ x ) ) ) |
| 8 | 2 7 | raleqbidv | |- ( j = J -> ( A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) <-> A. y e. ( ( Clsd ` J ) i^i ~P x ) E. z e. J ( y C_ z /\ ( ( cls ` J ) ` z ) C_ x ) ) ) |
| 9 | 8 | raleqbi1dv | |- ( j = J -> ( A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) <-> A. x e. J A. y e. ( ( Clsd ` J ) i^i ~P x ) E. z e. J ( y C_ z /\ ( ( cls ` J ) ` z ) C_ x ) ) ) |
| 10 | df-nrm | |- Nrm = { j e. Top | A. x e. j A. y e. ( ( Clsd ` j ) i^i ~P x ) E. z e. j ( y C_ z /\ ( ( cls ` j ) ` z ) C_ x ) } |
|
| 11 | 9 10 | elrab2 | |- ( J e. Nrm <-> ( J e. Top /\ A. x e. J A. y e. ( ( Clsd ` J ) i^i ~P x ) E. z e. J ( y C_ z /\ ( ( cls ` J ) ` z ) C_ x ) ) ) |