This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological indistinguishability map is an open map. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| Assertion | kqopn | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " U ) e. ( KQ ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | imassrn | |- ( F " U ) C_ ran F |
|
| 3 | 2 | a1i | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " U ) C_ ran F ) |
| 4 | 1 | kqsat | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( `' F " ( F " U ) ) = U ) |
| 5 | simpr | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> U e. J ) |
|
| 6 | 4 5 | eqeltrd | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( `' F " ( F " U ) ) e. J ) |
| 7 | 1 | kqffn | |- ( J e. ( TopOn ` X ) -> F Fn X ) |
| 8 | dffn4 | |- ( F Fn X <-> F : X -onto-> ran F ) |
|
| 9 | 7 8 | sylib | |- ( J e. ( TopOn ` X ) -> F : X -onto-> ran F ) |
| 10 | 9 | adantr | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> F : X -onto-> ran F ) |
| 11 | elqtop3 | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( ( F " U ) e. ( J qTop F ) <-> ( ( F " U ) C_ ran F /\ ( `' F " ( F " U ) ) e. J ) ) ) |
|
| 12 | 10 11 | syldan | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( ( F " U ) e. ( J qTop F ) <-> ( ( F " U ) C_ ran F /\ ( `' F " ( F " U ) ) e. J ) ) ) |
| 13 | 3 6 12 | mpbir2and | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " U ) e. ( J qTop F ) ) |
| 14 | 1 | kqval | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) ) |
| 15 | 14 | adantr | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( KQ ` J ) = ( J qTop F ) ) |
| 16 | 13 15 | eleqtrrd | |- ( ( J e. ( TopOn ` X ) /\ U e. J ) -> ( F " U ) e. ( KQ ` J ) ) |