This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| Assertion | kqtopon | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | 1 | kqval | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) = ( J qTop F ) ) |
| 3 | 1 | kqffn | |- ( J e. ( TopOn ` X ) -> F Fn X ) |
| 4 | dffn4 | |- ( F Fn X <-> F : X -onto-> ran F ) |
|
| 5 | 3 4 | sylib | |- ( J e. ( TopOn ` X ) -> F : X -onto-> ran F ) |
| 6 | qtoptopon | |- ( ( J e. ( TopOn ` X ) /\ F : X -onto-> ran F ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
|
| 7 | 5 6 | mpdan | |- ( J e. ( TopOn ` X ) -> ( J qTop F ) e. ( TopOn ` ran F ) ) |
| 8 | 2 7 | eqeltrd | |- ( J e. ( TopOn ` X ) -> ( KQ ` J ) e. ( TopOn ` ran F ) ) |