This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | clsss2 | |- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | cldrcl | |- ( C e. ( Clsd ` J ) -> J e. Top ) |
|
| 3 | 2 | adantr | |- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> J e. Top ) |
| 4 | 1 | cldss | |- ( C e. ( Clsd ` J ) -> C C_ X ) |
| 5 | 4 | adantr | |- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> C C_ X ) |
| 6 | simpr | |- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> S C_ C ) |
|
| 7 | 1 | clsss | |- ( ( J e. Top /\ C C_ X /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ ( ( cls ` J ) ` C ) ) |
| 8 | 3 5 6 7 | syl3anc | |- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ ( ( cls ` J ) ` C ) ) |
| 9 | cldcls | |- ( C e. ( Clsd ` J ) -> ( ( cls ` J ) ` C ) = C ) |
|
| 10 | 9 | adantr | |- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` C ) = C ) |
| 11 | 8 10 | sseqtrd | |- ( ( C e. ( Clsd ` J ) /\ S C_ C ) -> ( ( cls ` J ) ` S ) C_ C ) |