This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sine squared plus cosine squared is 1. Equation 17 of Gleason p. 311. Note that this holds for non-real arguments, even though individually each term is unbounded. (Contributed by NM, 15-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sincossq | |- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 2 | cosadd | |- ( ( A e. CC /\ -u A e. CC ) -> ( cos ` ( A + -u A ) ) = ( ( ( cos ` A ) x. ( cos ` -u A ) ) - ( ( sin ` A ) x. ( sin ` -u A ) ) ) ) |
|
| 3 | 1 2 | mpdan | |- ( A e. CC -> ( cos ` ( A + -u A ) ) = ( ( ( cos ` A ) x. ( cos ` -u A ) ) - ( ( sin ` A ) x. ( sin ` -u A ) ) ) ) |
| 4 | negid | |- ( A e. CC -> ( A + -u A ) = 0 ) |
|
| 5 | 4 | fveq2d | |- ( A e. CC -> ( cos ` ( A + -u A ) ) = ( cos ` 0 ) ) |
| 6 | cos0 | |- ( cos ` 0 ) = 1 |
|
| 7 | 5 6 | eqtrdi | |- ( A e. CC -> ( cos ` ( A + -u A ) ) = 1 ) |
| 8 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 9 | 8 | sqcld | |- ( A e. CC -> ( ( sin ` A ) ^ 2 ) e. CC ) |
| 10 | coscl | |- ( A e. CC -> ( cos ` A ) e. CC ) |
|
| 11 | 10 | sqcld | |- ( A e. CC -> ( ( cos ` A ) ^ 2 ) e. CC ) |
| 12 | 9 11 | addcomd | |- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) ) |
| 13 | 10 | sqvald | |- ( A e. CC -> ( ( cos ` A ) ^ 2 ) = ( ( cos ` A ) x. ( cos ` A ) ) ) |
| 14 | cosneg | |- ( A e. CC -> ( cos ` -u A ) = ( cos ` A ) ) |
|
| 15 | 14 | oveq2d | |- ( A e. CC -> ( ( cos ` A ) x. ( cos ` -u A ) ) = ( ( cos ` A ) x. ( cos ` A ) ) ) |
| 16 | 13 15 | eqtr4d | |- ( A e. CC -> ( ( cos ` A ) ^ 2 ) = ( ( cos ` A ) x. ( cos ` -u A ) ) ) |
| 17 | 8 | sqvald | |- ( A e. CC -> ( ( sin ` A ) ^ 2 ) = ( ( sin ` A ) x. ( sin ` A ) ) ) |
| 18 | sinneg | |- ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) |
|
| 19 | 18 | negeqd | |- ( A e. CC -> -u ( sin ` -u A ) = -u -u ( sin ` A ) ) |
| 20 | 8 | negnegd | |- ( A e. CC -> -u -u ( sin ` A ) = ( sin ` A ) ) |
| 21 | 19 20 | eqtrd | |- ( A e. CC -> -u ( sin ` -u A ) = ( sin ` A ) ) |
| 22 | 21 | oveq2d | |- ( A e. CC -> ( ( sin ` A ) x. -u ( sin ` -u A ) ) = ( ( sin ` A ) x. ( sin ` A ) ) ) |
| 23 | 17 22 | eqtr4d | |- ( A e. CC -> ( ( sin ` A ) ^ 2 ) = ( ( sin ` A ) x. -u ( sin ` -u A ) ) ) |
| 24 | 1 | sincld | |- ( A e. CC -> ( sin ` -u A ) e. CC ) |
| 25 | 8 24 | mulneg2d | |- ( A e. CC -> ( ( sin ` A ) x. -u ( sin ` -u A ) ) = -u ( ( sin ` A ) x. ( sin ` -u A ) ) ) |
| 26 | 23 25 | eqtrd | |- ( A e. CC -> ( ( sin ` A ) ^ 2 ) = -u ( ( sin ` A ) x. ( sin ` -u A ) ) ) |
| 27 | 16 26 | oveq12d | |- ( A e. CC -> ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) = ( ( ( cos ` A ) x. ( cos ` -u A ) ) + -u ( ( sin ` A ) x. ( sin ` -u A ) ) ) ) |
| 28 | 1 | coscld | |- ( A e. CC -> ( cos ` -u A ) e. CC ) |
| 29 | 10 28 | mulcld | |- ( A e. CC -> ( ( cos ` A ) x. ( cos ` -u A ) ) e. CC ) |
| 30 | 8 24 | mulcld | |- ( A e. CC -> ( ( sin ` A ) x. ( sin ` -u A ) ) e. CC ) |
| 31 | 29 30 | negsubd | |- ( A e. CC -> ( ( ( cos ` A ) x. ( cos ` -u A ) ) + -u ( ( sin ` A ) x. ( sin ` -u A ) ) ) = ( ( ( cos ` A ) x. ( cos ` -u A ) ) - ( ( sin ` A ) x. ( sin ` -u A ) ) ) ) |
| 32 | 12 27 31 | 3eqtrrd | |- ( A e. CC -> ( ( ( cos ` A ) x. ( cos ` -u A ) ) - ( ( sin ` A ) x. ( sin ` -u A ) ) ) = ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
| 33 | 3 7 32 | 3eqtr3rd | |- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |