This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Integration by parts. If B ( x ) is the derivative of A ( x ) and D ( x ) is the derivative of C ( x ) , and E = ( A x. B ) ( X ) and F = ( A x. B ) ( Y ) , then under suitable integrability and differentiability assumptions, the integral of A x. D from X to Y is equal to F - E minus the integral of B x. C . (Contributed by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgparts.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| itgparts.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | ||
| itgparts.le | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | ||
| itgparts.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | ||
| itgparts.c | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | ||
| itgparts.b | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | ||
| itgparts.d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | ||
| itgparts.ad | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐴 · 𝐷 ) ) ∈ 𝐿1 ) | ||
| itgparts.bc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐵 · 𝐶 ) ) ∈ 𝐿1 ) | ||
| itgparts.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | ||
| itgparts.dc | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ) | ||
| itgparts.e | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐴 · 𝐶 ) = 𝐸 ) | ||
| itgparts.f | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝐴 · 𝐶 ) = 𝐹 ) | ||
| Assertion | itgparts | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 = ( ( 𝐹 − 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgparts.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 2 | itgparts.y | ⊢ ( 𝜑 → 𝑌 ∈ ℝ ) | |
| 3 | itgparts.le | ⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) | |
| 4 | itgparts.a | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | |
| 5 | itgparts.c | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) | |
| 6 | itgparts.b | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | |
| 7 | itgparts.d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) | |
| 8 | itgparts.ad | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐴 · 𝐷 ) ) ∈ 𝐿1 ) | |
| 9 | itgparts.bc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐵 · 𝐶 ) ) ∈ 𝐿1 ) | |
| 10 | itgparts.da | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) | |
| 11 | itgparts.dc | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ) | |
| 12 | itgparts.e | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝐴 · 𝐶 ) = 𝐸 ) | |
| 13 | itgparts.f | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑌 ) → ( 𝐴 · 𝐶 ) = 𝐹 ) | |
| 14 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | |
| 15 | 6 14 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
| 16 | 15 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐵 ∈ ℂ ) |
| 17 | ioossicc | ⊢ ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) | |
| 18 | 17 | sseli | ⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) → 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 19 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | |
| 20 | 5 19 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
| 21 | 20 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐶 ∈ ℂ ) |
| 22 | 18 21 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐶 ∈ ℂ ) |
| 23 | 16 22 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐵 · 𝐶 ) ∈ ℂ ) |
| 24 | 23 9 | itgcl | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ∈ ℂ ) |
| 25 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) | |
| 26 | 4 25 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) : ( 𝑋 [,] 𝑌 ) ⟶ ℂ ) |
| 27 | 26 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → 𝐴 ∈ ℂ ) |
| 28 | 18 27 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐴 ∈ ℂ ) |
| 29 | cncff | ⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) | |
| 30 | 7 29 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) : ( 𝑋 (,) 𝑌 ) ⟶ ℂ ) |
| 31 | 30 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝐷 ∈ ℂ ) |
| 32 | 28 31 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐴 · 𝐷 ) ∈ ℂ ) |
| 33 | 32 8 | itgcl | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ∈ ℂ ) |
| 34 | 24 33 | pncan2d | ⊢ ( 𝜑 → ( ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) − ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ) = ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) |
| 35 | 23 9 32 8 | itgadd | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) d 𝑥 = ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) ) |
| 36 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) = ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑡 ) ) | |
| 37 | nfcv | ⊢ Ⅎ 𝑡 ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) | |
| 38 | nfcv | ⊢ Ⅎ 𝑥 ℝ | |
| 39 | nfcv | ⊢ Ⅎ 𝑥 D | |
| 40 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) | |
| 41 | 38 39 40 | nfov | ⊢ Ⅎ 𝑥 ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) |
| 42 | nfcv | ⊢ Ⅎ 𝑥 𝑡 | |
| 43 | 41 42 | nffv | ⊢ Ⅎ 𝑥 ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑡 ) |
| 44 | 36 37 43 | cbvitg | ⊢ ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑡 ) d 𝑡 |
| 45 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 46 | 45 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 47 | iccssre | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) | |
| 48 | 1 2 47 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 [,] 𝑌 ) ⊆ ℝ ) |
| 49 | 27 21 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
| 50 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 51 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 52 | iccntr | ⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) | |
| 53 | 1 2 52 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑋 [,] 𝑌 ) ) = ( 𝑋 (,) 𝑌 ) ) |
| 54 | 46 48 49 50 51 53 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ) |
| 55 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 56 | 55 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 57 | 46 48 27 50 51 53 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) ) |
| 58 | 57 10 | eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐵 ) ) |
| 59 | 46 48 21 50 51 53 | dvmptntr | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ) = ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ) ) |
| 60 | 59 11 | eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐷 ) ) |
| 61 | 56 28 16 58 22 31 60 | dvmptmul | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) ) |
| 62 | 31 28 | mulcomd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( 𝐷 · 𝐴 ) = ( 𝐴 · 𝐷 ) ) |
| 63 | 62 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) = ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
| 64 | 63 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐷 · 𝐴 ) ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ) |
| 65 | 54 61 64 | 3eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ) |
| 66 | 51 | addcn | ⊢ + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 67 | 66 | a1i | ⊢ ( 𝜑 → + ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 68 | resmpt | ⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ) | |
| 69 | 17 68 | ax-mp | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) |
| 70 | rescncf | ⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) ) | |
| 71 | 17 5 70 | mpsyl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐶 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 72 | 69 71 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐶 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 73 | 6 72 | mulcncf | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐵 · 𝐶 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 74 | resmpt | ⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ) | |
| 75 | 17 74 | ax-mp | ⊢ ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ↾ ( 𝑋 (,) 𝑌 ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) |
| 76 | rescncf | ⊢ ( ( 𝑋 (,) 𝑌 ) ⊆ ( 𝑋 [,] 𝑌 ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) ) | |
| 77 | 17 4 76 | mpsyl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ 𝐴 ) ↾ ( 𝑋 (,) 𝑌 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 78 | 75 77 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ 𝐴 ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 79 | 78 7 | mulcncf | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( 𝐴 · 𝐷 ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 80 | 51 67 73 79 | cncfmpt2f | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 81 | 65 80 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ∈ ( ( 𝑋 (,) 𝑌 ) –cn→ ℂ ) ) |
| 82 | 23 9 32 8 | ibladd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ∈ 𝐿1 ) |
| 83 | 65 82 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ∈ 𝐿1 ) |
| 84 | 4 5 | mulcncf | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ∈ ( ( 𝑋 [,] 𝑌 ) –cn→ ℂ ) ) |
| 85 | 1 2 3 81 83 84 | ftc2 | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑡 ) d 𝑡 = ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) ) ) |
| 86 | 44 85 | eqtrid | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) ) ) |
| 87 | 65 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ‘ 𝑥 ) ) |
| 88 | 87 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ‘ 𝑥 ) ) |
| 89 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) | |
| 90 | ovex | ⊢ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ∈ V | |
| 91 | eqid | ⊢ ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) = ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) | |
| 92 | 91 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ∧ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ∈ V ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ‘ 𝑥 ) = ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
| 93 | 89 90 92 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ↦ ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) ‘ 𝑥 ) = ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
| 94 | 88 93 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑋 (,) 𝑌 ) ) → ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) = ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) ) |
| 95 | 94 | itgeq2dv | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( ℝ D ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) d 𝑥 ) |
| 96 | 1 | rexrd | ⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 97 | 2 | rexrd | ⊢ ( 𝜑 → 𝑌 ∈ ℝ* ) |
| 98 | ubicc2 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 99 | 96 97 3 98 | syl3anc | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 100 | ovex | ⊢ ( 𝐴 · 𝐶 ) ∈ V | |
| 101 | 100 | csbex | ⊢ ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ∈ V |
| 102 | eqid | ⊢ ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) = ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) | |
| 103 | 102 | fvmpts | ⊢ ( ( 𝑌 ∈ ( 𝑋 [,] 𝑌 ) ∧ ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ∈ V ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) = ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ) |
| 104 | 99 101 103 | sylancl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) = ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ) |
| 105 | 2 13 | csbied | ⊢ ( 𝜑 → ⦋ 𝑌 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) = 𝐹 ) |
| 106 | 104 105 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) = 𝐹 ) |
| 107 | lbicc2 | ⊢ ( ( 𝑋 ∈ ℝ* ∧ 𝑌 ∈ ℝ* ∧ 𝑋 ≤ 𝑌 ) → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) | |
| 108 | 96 97 3 107 | syl3anc | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ) |
| 109 | 100 | csbex | ⊢ ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ∈ V |
| 110 | 102 | fvmpts | ⊢ ( ( 𝑋 ∈ ( 𝑋 [,] 𝑌 ) ∧ ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ∈ V ) → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) = ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ) |
| 111 | 108 109 110 | sylancl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) = ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) ) |
| 112 | 1 12 | csbied | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑥 ⦌ ( 𝐴 · 𝐶 ) = 𝐸 ) |
| 113 | 111 112 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) = 𝐸 ) |
| 114 | 106 113 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑌 ) − ( ( 𝑥 ∈ ( 𝑋 [,] 𝑌 ) ↦ ( 𝐴 · 𝐶 ) ) ‘ 𝑋 ) ) = ( 𝐹 − 𝐸 ) ) |
| 115 | 86 95 114 | 3eqtr3d | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( ( 𝐵 · 𝐶 ) + ( 𝐴 · 𝐷 ) ) d 𝑥 = ( 𝐹 − 𝐸 ) ) |
| 116 | 35 115 | eqtr3d | ⊢ ( 𝜑 → ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) = ( 𝐹 − 𝐸 ) ) |
| 117 | 116 | oveq1d | ⊢ ( 𝜑 → ( ( ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 + ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 ) − ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ) = ( ( 𝐹 − 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ) ) |
| 118 | 34 117 | eqtr3d | ⊢ ( 𝜑 → ∫ ( 𝑋 (,) 𝑌 ) ( 𝐴 · 𝐷 ) d 𝑥 = ( ( 𝐹 − 𝐸 ) − ∫ ( 𝑋 (,) 𝑌 ) ( 𝐵 · 𝐶 ) d 𝑥 ) ) |