This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvitg.1 | |- ( x = y -> B = C ) |
|
| cbvitg.2 | |- F/_ y B |
||
| cbvitg.3 | |- F/_ x C |
||
| Assertion | cbvitg | |- S. A B _d x = S. A C _d y |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvitg.1 | |- ( x = y -> B = C ) |
|
| 2 | cbvitg.2 | |- F/_ y B |
|
| 3 | cbvitg.3 | |- F/_ x C |
|
| 4 | nfv | |- F/ y x e. A |
|
| 5 | nfcv | |- F/_ y 0 |
|
| 6 | nfcv | |- F/_ y <_ |
|
| 7 | nfcv | |- F/_ y Re |
|
| 8 | nfcv | |- F/_ y / |
|
| 9 | nfcv | |- F/_ y ( _i ^ k ) |
|
| 10 | 2 8 9 | nfov | |- F/_ y ( B / ( _i ^ k ) ) |
| 11 | 7 10 | nffv | |- F/_ y ( Re ` ( B / ( _i ^ k ) ) ) |
| 12 | 5 6 11 | nfbr | |- F/ y 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) |
| 13 | 4 12 | nfan | |- F/ y ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) |
| 14 | 13 11 5 | nfif | |- F/_ y if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) |
| 15 | nfv | |- F/ x y e. A |
|
| 16 | nfcv | |- F/_ x 0 |
|
| 17 | nfcv | |- F/_ x <_ |
|
| 18 | nfcv | |- F/_ x Re |
|
| 19 | nfcv | |- F/_ x / |
|
| 20 | nfcv | |- F/_ x ( _i ^ k ) |
|
| 21 | 3 19 20 | nfov | |- F/_ x ( C / ( _i ^ k ) ) |
| 22 | 18 21 | nffv | |- F/_ x ( Re ` ( C / ( _i ^ k ) ) ) |
| 23 | 16 17 22 | nfbr | |- F/ x 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) |
| 24 | 15 23 | nfan | |- F/ x ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) |
| 25 | 24 22 16 | nfif | |- F/_ x if ( ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) |
| 26 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 27 | 1 | fvoveq1d | |- ( x = y -> ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( C / ( _i ^ k ) ) ) ) |
| 28 | 27 | breq2d | |- ( x = y -> ( 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) <-> 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) ) |
| 29 | 26 28 | anbi12d | |- ( x = y -> ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) <-> ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) ) ) |
| 30 | 29 27 | ifbieq1d | |- ( x = y -> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) = if ( ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) |
| 31 | 14 25 30 | cbvmpt | |- ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) = ( y e. RR |-> if ( ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) |
| 32 | 31 | a1i | |- ( k e. ( 0 ... 3 ) -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) = ( y e. RR |-> if ( ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) |
| 33 | 32 | fveq2d | |- ( k e. ( 0 ... 3 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( y e. RR |-> if ( ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 34 | 33 | oveq2d | |- ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( _i ^ k ) x. ( S.2 ` ( y e. RR |-> if ( ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) ) |
| 35 | 34 | sumeq2i | |- sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( y e. RR |-> if ( ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 36 | eqid | |- ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) |
|
| 37 | 36 | dfitg | |- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 38 | eqid | |- ( Re ` ( C / ( _i ^ k ) ) ) = ( Re ` ( C / ( _i ^ k ) ) ) |
|
| 39 | 38 | dfitg | |- S. A C _d y = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( y e. RR |-> if ( ( y e. A /\ 0 <_ ( Re ` ( C / ( _i ^ k ) ) ) ) , ( Re ` ( C / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 40 | 35 37 39 | 3eqtr4i | |- S. A B _d x = S. A C _d y |