This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Approximate version of itg1le . If F <_ G for almost all x , then S.1 F <_ S.1 G . (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 6-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg10a.1 | |- ( ph -> F e. dom S.1 ) |
|
| itg10a.2 | |- ( ph -> A C_ RR ) |
||
| itg10a.3 | |- ( ph -> ( vol* ` A ) = 0 ) |
||
| itg1lea.4 | |- ( ph -> G e. dom S.1 ) |
||
| itg1lea.5 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) |
||
| Assertion | itg1lea | |- ( ph -> ( S.1 ` F ) <_ ( S.1 ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg10a.1 | |- ( ph -> F e. dom S.1 ) |
|
| 2 | itg10a.2 | |- ( ph -> A C_ RR ) |
|
| 3 | itg10a.3 | |- ( ph -> ( vol* ` A ) = 0 ) |
|
| 4 | itg1lea.4 | |- ( ph -> G e. dom S.1 ) |
|
| 5 | itg1lea.5 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) |
|
| 6 | i1fsub | |- ( ( G e. dom S.1 /\ F e. dom S.1 ) -> ( G oF - F ) e. dom S.1 ) |
|
| 7 | 4 1 6 | syl2anc | |- ( ph -> ( G oF - F ) e. dom S.1 ) |
| 8 | eldifi | |- ( x e. ( RR \ A ) -> x e. RR ) |
|
| 9 | i1ff | |- ( G e. dom S.1 -> G : RR --> RR ) |
|
| 10 | 4 9 | syl | |- ( ph -> G : RR --> RR ) |
| 11 | 10 | ffvelcdmda | |- ( ( ph /\ x e. RR ) -> ( G ` x ) e. RR ) |
| 12 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 13 | 1 12 | syl | |- ( ph -> F : RR --> RR ) |
| 14 | 13 | ffvelcdmda | |- ( ( ph /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 15 | 11 14 | subge0d | |- ( ( ph /\ x e. RR ) -> ( 0 <_ ( ( G ` x ) - ( F ` x ) ) <-> ( F ` x ) <_ ( G ` x ) ) ) |
| 16 | 8 15 | sylan2 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( 0 <_ ( ( G ` x ) - ( F ` x ) ) <-> ( F ` x ) <_ ( G ` x ) ) ) |
| 17 | 5 16 | mpbird | |- ( ( ph /\ x e. ( RR \ A ) ) -> 0 <_ ( ( G ` x ) - ( F ` x ) ) ) |
| 18 | 10 | ffnd | |- ( ph -> G Fn RR ) |
| 19 | 13 | ffnd | |- ( ph -> F Fn RR ) |
| 20 | reex | |- RR e. _V |
|
| 21 | 20 | a1i | |- ( ph -> RR e. _V ) |
| 22 | inidm | |- ( RR i^i RR ) = RR |
|
| 23 | eqidd | |- ( ( ph /\ x e. RR ) -> ( G ` x ) = ( G ` x ) ) |
|
| 24 | eqidd | |- ( ( ph /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) |
|
| 25 | 18 19 21 21 22 23 24 | ofval | |- ( ( ph /\ x e. RR ) -> ( ( G oF - F ) ` x ) = ( ( G ` x ) - ( F ` x ) ) ) |
| 26 | 8 25 | sylan2 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( ( G oF - F ) ` x ) = ( ( G ` x ) - ( F ` x ) ) ) |
| 27 | 17 26 | breqtrrd | |- ( ( ph /\ x e. ( RR \ A ) ) -> 0 <_ ( ( G oF - F ) ` x ) ) |
| 28 | 7 2 3 27 | itg1ge0a | |- ( ph -> 0 <_ ( S.1 ` ( G oF - F ) ) ) |
| 29 | itg1sub | |- ( ( G e. dom S.1 /\ F e. dom S.1 ) -> ( S.1 ` ( G oF - F ) ) = ( ( S.1 ` G ) - ( S.1 ` F ) ) ) |
|
| 30 | 4 1 29 | syl2anc | |- ( ph -> ( S.1 ` ( G oF - F ) ) = ( ( S.1 ` G ) - ( S.1 ` F ) ) ) |
| 31 | 28 30 | breqtrd | |- ( ph -> 0 <_ ( ( S.1 ` G ) - ( S.1 ` F ) ) ) |
| 32 | itg1cl | |- ( G e. dom S.1 -> ( S.1 ` G ) e. RR ) |
|
| 33 | 4 32 | syl | |- ( ph -> ( S.1 ` G ) e. RR ) |
| 34 | itg1cl | |- ( F e. dom S.1 -> ( S.1 ` F ) e. RR ) |
|
| 35 | 1 34 | syl | |- ( ph -> ( S.1 ` F ) e. RR ) |
| 36 | 33 35 | subge0d | |- ( ph -> ( 0 <_ ( ( S.1 ` G ) - ( S.1 ` F ) ) <-> ( S.1 ` F ) <_ ( S.1 ` G ) ) ) |
| 37 | 31 36 | mpbid | |- ( ph -> ( S.1 ` F ) <_ ( S.1 ` G ) ) |