This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Approximate version of itg2le . If F <_ G for almost all x , then S.2 F <_ S.2 G . (Contributed by Mario Carneiro, 11-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2lea.1 | |- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
|
| itg2lea.2 | |- ( ph -> G : RR --> ( 0 [,] +oo ) ) |
||
| itg2lea.3 | |- ( ph -> A C_ RR ) |
||
| itg2lea.4 | |- ( ph -> ( vol* ` A ) = 0 ) |
||
| itg2lea.5 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) |
||
| Assertion | itg2lea | |- ( ph -> ( S.2 ` F ) <_ ( S.2 ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2lea.1 | |- ( ph -> F : RR --> ( 0 [,] +oo ) ) |
|
| 2 | itg2lea.2 | |- ( ph -> G : RR --> ( 0 [,] +oo ) ) |
|
| 3 | itg2lea.3 | |- ( ph -> A C_ RR ) |
|
| 4 | itg2lea.4 | |- ( ph -> ( vol* ` A ) = 0 ) |
|
| 5 | itg2lea.5 | |- ( ( ph /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) |
|
| 6 | 2 | adantr | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> G : RR --> ( 0 [,] +oo ) ) |
| 7 | simprl | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> f e. dom S.1 ) |
|
| 8 | 3 | adantr | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> A C_ RR ) |
| 9 | 4 | adantr | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> ( vol* ` A ) = 0 ) |
| 10 | i1ff | |- ( f e. dom S.1 -> f : RR --> RR ) |
|
| 11 | 10 | ad2antrl | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> f : RR --> RR ) |
| 12 | eldifi | |- ( x e. ( RR \ A ) -> x e. RR ) |
|
| 13 | ffvelcdm | |- ( ( f : RR --> RR /\ x e. RR ) -> ( f ` x ) e. RR ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( f ` x ) e. RR ) |
| 15 | 14 | rexrd | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( f ` x ) e. RR* ) |
| 16 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
| 17 | 1 | adantr | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> F : RR --> ( 0 [,] +oo ) ) |
| 18 | ffvelcdm | |- ( ( F : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,] +oo ) ) |
|
| 19 | 17 12 18 | syl2an | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) e. ( 0 [,] +oo ) ) |
| 20 | 16 19 | sselid | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) e. RR* ) |
| 21 | ffvelcdm | |- ( ( G : RR --> ( 0 [,] +oo ) /\ x e. RR ) -> ( G ` x ) e. ( 0 [,] +oo ) ) |
|
| 22 | 6 12 21 | syl2an | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( G ` x ) e. ( 0 [,] +oo ) ) |
| 23 | 16 22 | sselid | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( G ` x ) e. RR* ) |
| 24 | simprr | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> f oR <_ F ) |
|
| 25 | 11 | ffnd | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> f Fn RR ) |
| 26 | 17 | ffnd | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> F Fn RR ) |
| 27 | reex | |- RR e. _V |
|
| 28 | 27 | a1i | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> RR e. _V ) |
| 29 | inidm | |- ( RR i^i RR ) = RR |
|
| 30 | eqidd | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. RR ) -> ( f ` x ) = ( f ` x ) ) |
|
| 31 | eqidd | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. RR ) -> ( F ` x ) = ( F ` x ) ) |
|
| 32 | 25 26 28 28 29 30 31 | ofrfval | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> ( f oR <_ F <-> A. x e. RR ( f ` x ) <_ ( F ` x ) ) ) |
| 33 | 24 32 | mpbid | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> A. x e. RR ( f ` x ) <_ ( F ` x ) ) |
| 34 | 33 | r19.21bi | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. RR ) -> ( f ` x ) <_ ( F ` x ) ) |
| 35 | 12 34 | sylan2 | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( f ` x ) <_ ( F ` x ) ) |
| 36 | 5 | adantlr | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( F ` x ) <_ ( G ` x ) ) |
| 37 | 15 20 23 35 36 | xrletrd | |- ( ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) /\ x e. ( RR \ A ) ) -> ( f ` x ) <_ ( G ` x ) ) |
| 38 | 6 7 8 9 37 | itg2uba | |- ( ( ph /\ ( f e. dom S.1 /\ f oR <_ F ) ) -> ( S.1 ` f ) <_ ( S.2 ` G ) ) |
| 39 | 38 | expr | |- ( ( ph /\ f e. dom S.1 ) -> ( f oR <_ F -> ( S.1 ` f ) <_ ( S.2 ` G ) ) ) |
| 40 | 39 | ralrimiva | |- ( ph -> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ ( S.2 ` G ) ) ) |
| 41 | itg2cl | |- ( G : RR --> ( 0 [,] +oo ) -> ( S.2 ` G ) e. RR* ) |
|
| 42 | 2 41 | syl | |- ( ph -> ( S.2 ` G ) e. RR* ) |
| 43 | itg2leub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( S.2 ` G ) e. RR* ) -> ( ( S.2 ` F ) <_ ( S.2 ` G ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ ( S.2 ` G ) ) ) ) |
|
| 44 | 1 42 43 | syl2anc | |- ( ph -> ( ( S.2 ` F ) <_ ( S.2 ` G ) <-> A. f e. dom S.1 ( f oR <_ F -> ( S.1 ` f ) <_ ( S.2 ` G ) ) ) ) |
| 45 | 40 44 | mpbird | |- ( ph -> ( S.2 ` F ) <_ ( S.2 ` G ) ) |