This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for i1f1 and itg11 . (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | i1f1.1 | |- F = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) |
|
| Assertion | i1f1lem | |- ( F : RR --> { 0 , 1 } /\ ( A e. dom vol -> ( `' F " { 1 } ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1f1.1 | |- F = ( x e. RR |-> if ( x e. A , 1 , 0 ) ) |
|
| 2 | 1ex | |- 1 e. _V |
|
| 3 | 2 | prid2 | |- 1 e. { 0 , 1 } |
| 4 | c0ex | |- 0 e. _V |
|
| 5 | 4 | prid1 | |- 0 e. { 0 , 1 } |
| 6 | 3 5 | ifcli | |- if ( x e. A , 1 , 0 ) e. { 0 , 1 } |
| 7 | 6 | rgenw | |- A. x e. RR if ( x e. A , 1 , 0 ) e. { 0 , 1 } |
| 8 | 1 | fmpt | |- ( A. x e. RR if ( x e. A , 1 , 0 ) e. { 0 , 1 } <-> F : RR --> { 0 , 1 } ) |
| 9 | 7 8 | mpbi | |- F : RR --> { 0 , 1 } |
| 10 | 6 | a1i | |- ( ( A e. dom vol /\ x e. RR ) -> if ( x e. A , 1 , 0 ) e. { 0 , 1 } ) |
| 11 | 10 1 | fmptd | |- ( A e. dom vol -> F : RR --> { 0 , 1 } ) |
| 12 | ffn | |- ( F : RR --> { 0 , 1 } -> F Fn RR ) |
|
| 13 | elpreima | |- ( F Fn RR -> ( y e. ( `' F " { 1 } ) <-> ( y e. RR /\ ( F ` y ) e. { 1 } ) ) ) |
|
| 14 | 11 12 13 | 3syl | |- ( A e. dom vol -> ( y e. ( `' F " { 1 } ) <-> ( y e. RR /\ ( F ` y ) e. { 1 } ) ) ) |
| 15 | fvex | |- ( F ` y ) e. _V |
|
| 16 | 15 | elsn | |- ( ( F ` y ) e. { 1 } <-> ( F ` y ) = 1 ) |
| 17 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 18 | 17 | ifbid | |- ( x = y -> if ( x e. A , 1 , 0 ) = if ( y e. A , 1 , 0 ) ) |
| 19 | 2 4 | ifex | |- if ( y e. A , 1 , 0 ) e. _V |
| 20 | 18 1 19 | fvmpt | |- ( y e. RR -> ( F ` y ) = if ( y e. A , 1 , 0 ) ) |
| 21 | 20 | eqeq1d | |- ( y e. RR -> ( ( F ` y ) = 1 <-> if ( y e. A , 1 , 0 ) = 1 ) ) |
| 22 | 0ne1 | |- 0 =/= 1 |
|
| 23 | iffalse | |- ( -. y e. A -> if ( y e. A , 1 , 0 ) = 0 ) |
|
| 24 | 23 | eqeq1d | |- ( -. y e. A -> ( if ( y e. A , 1 , 0 ) = 1 <-> 0 = 1 ) ) |
| 25 | 24 | necon3bbid | |- ( -. y e. A -> ( -. if ( y e. A , 1 , 0 ) = 1 <-> 0 =/= 1 ) ) |
| 26 | 22 25 | mpbiri | |- ( -. y e. A -> -. if ( y e. A , 1 , 0 ) = 1 ) |
| 27 | 26 | con4i | |- ( if ( y e. A , 1 , 0 ) = 1 -> y e. A ) |
| 28 | iftrue | |- ( y e. A -> if ( y e. A , 1 , 0 ) = 1 ) |
|
| 29 | 27 28 | impbii | |- ( if ( y e. A , 1 , 0 ) = 1 <-> y e. A ) |
| 30 | 21 29 | bitrdi | |- ( y e. RR -> ( ( F ` y ) = 1 <-> y e. A ) ) |
| 31 | 16 30 | bitrid | |- ( y e. RR -> ( ( F ` y ) e. { 1 } <-> y e. A ) ) |
| 32 | 31 | pm5.32i | |- ( ( y e. RR /\ ( F ` y ) e. { 1 } ) <-> ( y e. RR /\ y e. A ) ) |
| 33 | 14 32 | bitrdi | |- ( A e. dom vol -> ( y e. ( `' F " { 1 } ) <-> ( y e. RR /\ y e. A ) ) ) |
| 34 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 35 | 34 | sseld | |- ( A e. dom vol -> ( y e. A -> y e. RR ) ) |
| 36 | 35 | pm4.71rd | |- ( A e. dom vol -> ( y e. A <-> ( y e. RR /\ y e. A ) ) ) |
| 37 | 33 36 | bitr4d | |- ( A e. dom vol -> ( y e. ( `' F " { 1 } ) <-> y e. A ) ) |
| 38 | 37 | eqrdv | |- ( A e. dom vol -> ( `' F " { 1 } ) = A ) |
| 39 | 9 38 | pm3.2i | |- ( F : RR --> { 0 , 1 } /\ ( A e. dom vol -> ( `' F " { 1 } ) = A ) ) |