This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removal of a singleton from an unordered pair. (Contributed by NM, 16-Mar-2006) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difprsnss | |- ( { A , B } \ { A } ) C_ { B } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | elpr | |- ( x e. { A , B } <-> ( x = A \/ x = B ) ) |
| 3 | velsn | |- ( x e. { A } <-> x = A ) |
|
| 4 | 3 | notbii | |- ( -. x e. { A } <-> -. x = A ) |
| 5 | biorf | |- ( -. x = A -> ( x = B <-> ( x = A \/ x = B ) ) ) |
|
| 6 | 5 | biimparc | |- ( ( ( x = A \/ x = B ) /\ -. x = A ) -> x = B ) |
| 7 | 2 4 6 | syl2anb | |- ( ( x e. { A , B } /\ -. x e. { A } ) -> x = B ) |
| 8 | eldif | |- ( x e. ( { A , B } \ { A } ) <-> ( x e. { A , B } /\ -. x e. { A } ) ) |
|
| 9 | velsn | |- ( x e. { B } <-> x = B ) |
|
| 10 | 7 8 9 | 3imtr4i | |- ( x e. ( { A , B } \ { A } ) -> x e. { B } ) |
| 11 | 10 | ssriv | |- ( { A , B } \ { A } ) C_ { B } |