This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013) (Revised by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sumfc | |- sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( k e. A |-> B ) = ( k e. A |-> B ) |
|
| 2 | 1 | fvmpt2i | |- ( k e. A -> ( ( k e. A |-> B ) ` k ) = ( _I ` B ) ) |
| 3 | 2 | sumeq2i | |- sum_ k e. A ( ( k e. A |-> B ) ` k ) = sum_ k e. A ( _I ` B ) |
| 4 | fveq2 | |- ( j = k -> ( ( k e. A |-> B ) ` j ) = ( ( k e. A |-> B ) ` k ) ) |
|
| 5 | nffvmpt1 | |- F/_ k ( ( k e. A |-> B ) ` j ) |
|
| 6 | nfcv | |- F/_ j ( ( k e. A |-> B ) ` k ) |
|
| 7 | 4 5 6 | cbvsum | |- sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A ( ( k e. A |-> B ) ` k ) |
| 8 | sum2id | |- sum_ k e. A B = sum_ k e. A ( _I ` B ) |
|
| 9 | 3 7 8 | 3eqtr4i | |- sum_ j e. A ( ( k e. A |-> B ) ` j ) = sum_ k e. A B |