This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by SN, 7-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eluzadd | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( N + K ) e. ( ZZ>= ` ( M + K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 2 | zaddcl | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( M + K ) e. ZZ ) |
|
| 3 | 1 2 | sylan | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( M + K ) e. ZZ ) |
| 4 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 5 | zaddcl | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N + K ) e. ZZ ) |
|
| 6 | 4 5 | sylan | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( N + K ) e. ZZ ) |
| 7 | 1 | zred | |- ( N e. ( ZZ>= ` M ) -> M e. RR ) |
| 8 | 7 | adantr | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> M e. RR ) |
| 9 | eluzelre | |- ( N e. ( ZZ>= ` M ) -> N e. RR ) |
|
| 10 | 9 | adantr | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> N e. RR ) |
| 11 | zre | |- ( K e. ZZ -> K e. RR ) |
|
| 12 | 11 | adantl | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> K e. RR ) |
| 13 | eluzle | |- ( N e. ( ZZ>= ` M ) -> M <_ N ) |
|
| 14 | 13 | adantr | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> M <_ N ) |
| 15 | 8 10 12 14 | leadd1dd | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( M + K ) <_ ( N + K ) ) |
| 16 | eluz2 | |- ( ( N + K ) e. ( ZZ>= ` ( M + K ) ) <-> ( ( M + K ) e. ZZ /\ ( N + K ) e. ZZ /\ ( M + K ) <_ ( N + K ) ) ) |
|
| 17 | 3 6 15 16 | syl3anbrc | |- ( ( N e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( N + K ) e. ( ZZ>= ` ( M + K ) ) ) |