This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvmptg.1 | |- ( x = A -> B = C ) |
|
| fvmptg.2 | |- F = ( x e. D |-> B ) |
||
| Assertion | fvmpti | |- ( A e. D -> ( F ` A ) = ( _I ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvmptg.1 | |- ( x = A -> B = C ) |
|
| 2 | fvmptg.2 | |- F = ( x e. D |-> B ) |
|
| 3 | 1 2 | fvmptg | |- ( ( A e. D /\ C e. _V ) -> ( F ` A ) = C ) |
| 4 | fvi | |- ( C e. _V -> ( _I ` C ) = C ) |
|
| 5 | 4 | adantl | |- ( ( A e. D /\ C e. _V ) -> ( _I ` C ) = C ) |
| 6 | 3 5 | eqtr4d | |- ( ( A e. D /\ C e. _V ) -> ( F ` A ) = ( _I ` C ) ) |
| 7 | 1 | eleq1d | |- ( x = A -> ( B e. _V <-> C e. _V ) ) |
| 8 | 2 | dmmpt | |- dom F = { x e. D | B e. _V } |
| 9 | 7 8 | elrab2 | |- ( A e. dom F <-> ( A e. D /\ C e. _V ) ) |
| 10 | 9 | baib | |- ( A e. D -> ( A e. dom F <-> C e. _V ) ) |
| 11 | 10 | notbid | |- ( A e. D -> ( -. A e. dom F <-> -. C e. _V ) ) |
| 12 | ndmfv | |- ( -. A e. dom F -> ( F ` A ) = (/) ) |
|
| 13 | 11 12 | biimtrrdi | |- ( A e. D -> ( -. C e. _V -> ( F ` A ) = (/) ) ) |
| 14 | 13 | imp | |- ( ( A e. D /\ -. C e. _V ) -> ( F ` A ) = (/) ) |
| 15 | fvprc | |- ( -. C e. _V -> ( _I ` C ) = (/) ) |
|
| 16 | 15 | adantl | |- ( ( A e. D /\ -. C e. _V ) -> ( _I ` C ) = (/) ) |
| 17 | 14 16 | eqtr4d | |- ( ( A e. D /\ -. C e. _V ) -> ( F ` A ) = ( _I ` C ) ) |
| 18 | 6 17 | pm2.61dan | |- ( A e. D -> ( F ` A ) = ( _I ` C ) ) |