This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | idsrngd.k | |- B = ( Base ` R ) |
|
| idsrngd.c | |- .* = ( *r ` R ) |
||
| idsrngd.r | |- ( ph -> R e. CRing ) |
||
| idsrngd.i | |- ( ( ph /\ x e. B ) -> ( .* ` x ) = x ) |
||
| Assertion | idsrngd | |- ( ph -> R e. *Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idsrngd.k | |- B = ( Base ` R ) |
|
| 2 | idsrngd.c | |- .* = ( *r ` R ) |
|
| 3 | idsrngd.r | |- ( ph -> R e. CRing ) |
|
| 4 | idsrngd.i | |- ( ( ph /\ x e. B ) -> ( .* ` x ) = x ) |
|
| 5 | 1 | a1i | |- ( ph -> B = ( Base ` R ) ) |
| 6 | eqidd | |- ( ph -> ( +g ` R ) = ( +g ` R ) ) |
|
| 7 | eqidd | |- ( ph -> ( .r ` R ) = ( .r ` R ) ) |
|
| 8 | 2 | a1i | |- ( ph -> .* = ( *r ` R ) ) |
| 9 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 10 | 3 9 | syl | |- ( ph -> R e. Ring ) |
| 11 | 4 | ralrimiva | |- ( ph -> A. x e. B ( .* ` x ) = x ) |
| 12 | 11 | adantr | |- ( ( ph /\ a e. B ) -> A. x e. B ( .* ` x ) = x ) |
| 13 | simpr | |- ( ( ph /\ a e. B ) -> a e. B ) |
|
| 14 | simpr | |- ( ( ( ph /\ a e. B ) /\ x = a ) -> x = a ) |
|
| 15 | 14 | fveq2d | |- ( ( ( ph /\ a e. B ) /\ x = a ) -> ( .* ` x ) = ( .* ` a ) ) |
| 16 | 15 14 | eqeq12d | |- ( ( ( ph /\ a e. B ) /\ x = a ) -> ( ( .* ` x ) = x <-> ( .* ` a ) = a ) ) |
| 17 | 13 16 | rspcdv | |- ( ( ph /\ a e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` a ) = a ) ) |
| 18 | 12 17 | mpd | |- ( ( ph /\ a e. B ) -> ( .* ` a ) = a ) |
| 19 | 18 13 | eqeltrd | |- ( ( ph /\ a e. B ) -> ( .* ` a ) e. B ) |
| 20 | 11 | adantr | |- ( ( ph /\ b e. B ) -> A. x e. B ( .* ` x ) = x ) |
| 21 | 20 | 3adant2 | |- ( ( ph /\ a e. B /\ b e. B ) -> A. x e. B ( .* ` x ) = x ) |
| 22 | ringgrp | |- ( R e. Ring -> R e. Grp ) |
|
| 23 | 10 22 | syl | |- ( ph -> R e. Grp ) |
| 24 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 25 | 1 24 | grpcl | |- ( ( R e. Grp /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) |
| 26 | 23 25 | syl3an1 | |- ( ( ph /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) |
| 27 | simpr | |- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( +g ` R ) b ) ) -> x = ( a ( +g ` R ) b ) ) |
|
| 28 | 27 | fveq2d | |- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( +g ` R ) b ) ) -> ( .* ` x ) = ( .* ` ( a ( +g ` R ) b ) ) ) |
| 29 | 28 27 | eqeq12d | |- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( +g ` R ) b ) ) -> ( ( .* ` x ) = x <-> ( .* ` ( a ( +g ` R ) b ) ) = ( a ( +g ` R ) b ) ) ) |
| 30 | 26 29 | rspcdv | |- ( ( ph /\ a e. B /\ b e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` ( a ( +g ` R ) b ) ) = ( a ( +g ` R ) b ) ) ) |
| 31 | 21 30 | mpd | |- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( +g ` R ) b ) ) = ( a ( +g ` R ) b ) ) |
| 32 | 18 | 3adant3 | |- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` a ) = a ) |
| 33 | simpr | |- ( ( ph /\ b e. B ) -> b e. B ) |
|
| 34 | simpr | |- ( ( ( ph /\ b e. B ) /\ x = b ) -> x = b ) |
|
| 35 | 34 | fveq2d | |- ( ( ( ph /\ b e. B ) /\ x = b ) -> ( .* ` x ) = ( .* ` b ) ) |
| 36 | 35 34 | eqeq12d | |- ( ( ( ph /\ b e. B ) /\ x = b ) -> ( ( .* ` x ) = x <-> ( .* ` b ) = b ) ) |
| 37 | 33 36 | rspcdv | |- ( ( ph /\ b e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` b ) = b ) ) |
| 38 | 20 37 | mpd | |- ( ( ph /\ b e. B ) -> ( .* ` b ) = b ) |
| 39 | 38 | 3adant2 | |- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` b ) = b ) |
| 40 | 32 39 | oveq12d | |- ( ( ph /\ a e. B /\ b e. B ) -> ( ( .* ` a ) ( +g ` R ) ( .* ` b ) ) = ( a ( +g ` R ) b ) ) |
| 41 | 31 40 | eqtr4d | |- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( +g ` R ) b ) ) = ( ( .* ` a ) ( +g ` R ) ( .* ` b ) ) ) |
| 42 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 43 | 1 42 | crngcom | |- ( ( R e. CRing /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) |
| 44 | 3 43 | syl3an1 | |- ( ( ph /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) = ( b ( .r ` R ) a ) ) |
| 45 | 1 42 | ringcl | |- ( ( R e. Ring /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) e. B ) |
| 46 | 10 45 | syl3an1 | |- ( ( ph /\ a e. B /\ b e. B ) -> ( a ( .r ` R ) b ) e. B ) |
| 47 | simpr | |- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( .r ` R ) b ) ) -> x = ( a ( .r ` R ) b ) ) |
|
| 48 | 47 | fveq2d | |- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( .r ` R ) b ) ) -> ( .* ` x ) = ( .* ` ( a ( .r ` R ) b ) ) ) |
| 49 | 48 47 | eqeq12d | |- ( ( ( ph /\ a e. B /\ b e. B ) /\ x = ( a ( .r ` R ) b ) ) -> ( ( .* ` x ) = x <-> ( .* ` ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) ) |
| 50 | 46 49 | rspcdv | |- ( ( ph /\ a e. B /\ b e. B ) -> ( A. x e. B ( .* ` x ) = x -> ( .* ` ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) ) |
| 51 | 21 50 | mpd | |- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( .r ` R ) b ) ) = ( a ( .r ` R ) b ) ) |
| 52 | 39 32 | oveq12d | |- ( ( ph /\ a e. B /\ b e. B ) -> ( ( .* ` b ) ( .r ` R ) ( .* ` a ) ) = ( b ( .r ` R ) a ) ) |
| 53 | 44 51 52 | 3eqtr4d | |- ( ( ph /\ a e. B /\ b e. B ) -> ( .* ` ( a ( .r ` R ) b ) ) = ( ( .* ` b ) ( .r ` R ) ( .* ` a ) ) ) |
| 54 | 18 | fveq2d | |- ( ( ph /\ a e. B ) -> ( .* ` ( .* ` a ) ) = ( .* ` a ) ) |
| 55 | 54 18 | eqtrd | |- ( ( ph /\ a e. B ) -> ( .* ` ( .* ` a ) ) = a ) |
| 56 | 5 6 7 8 10 19 41 53 55 | issrngd | |- ( ph -> R e. *Ring ) |