This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplicative identity of an opposite ring. (Contributed by Mario Carneiro, 1-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opprbas.1 | |- O = ( oppR ` R ) |
|
| oppr1.2 | |- .1. = ( 1r ` R ) |
||
| Assertion | oppr1 | |- .1. = ( 1r ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | |- O = ( oppR ` R ) |
|
| 2 | oppr1.2 | |- .1. = ( 1r ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 5 | eqid | |- ( .r ` O ) = ( .r ` O ) |
|
| 6 | 3 4 1 5 | opprmul | |- ( x ( .r ` O ) y ) = ( y ( .r ` R ) x ) |
| 7 | 6 | eqeq1i | |- ( ( x ( .r ` O ) y ) = y <-> ( y ( .r ` R ) x ) = y ) |
| 8 | 3 4 1 5 | opprmul | |- ( y ( .r ` O ) x ) = ( x ( .r ` R ) y ) |
| 9 | 8 | eqeq1i | |- ( ( y ( .r ` O ) x ) = y <-> ( x ( .r ` R ) y ) = y ) |
| 10 | 7 9 | anbi12ci | |- ( ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) <-> ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) |
| 11 | 10 | ralbii | |- ( A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) <-> A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) |
| 12 | 11 | anbi2i | |- ( ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) ) <-> ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) |
| 13 | 12 | iotabii | |- ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) |
| 14 | eqid | |- ( mulGrp ` O ) = ( mulGrp ` O ) |
|
| 15 | 1 3 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 16 | 14 15 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` O ) ) |
| 17 | 14 5 | mgpplusg | |- ( .r ` O ) = ( +g ` ( mulGrp ` O ) ) |
| 18 | eqid | |- ( 0g ` ( mulGrp ` O ) ) = ( 0g ` ( mulGrp ` O ) ) |
|
| 19 | 16 17 18 | grpidval | |- ( 0g ` ( mulGrp ` O ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` O ) y ) = y /\ ( y ( .r ` O ) x ) = y ) ) ) |
| 20 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 21 | 20 3 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 22 | 20 4 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 23 | eqid | |- ( 0g ` ( mulGrp ` R ) ) = ( 0g ` ( mulGrp ` R ) ) |
|
| 24 | 21 22 23 | grpidval | |- ( 0g ` ( mulGrp ` R ) ) = ( iota x ( x e. ( Base ` R ) /\ A. y e. ( Base ` R ) ( ( x ( .r ` R ) y ) = y /\ ( y ( .r ` R ) x ) = y ) ) ) |
| 25 | 13 19 24 | 3eqtr4i | |- ( 0g ` ( mulGrp ` O ) ) = ( 0g ` ( mulGrp ` R ) ) |
| 26 | eqid | |- ( 1r ` O ) = ( 1r ` O ) |
|
| 27 | 14 26 | ringidval | |- ( 1r ` O ) = ( 0g ` ( mulGrp ` O ) ) |
| 28 | 20 2 | ringidval | |- .1. = ( 0g ` ( mulGrp ` R ) ) |
| 29 | 25 27 28 | 3eqtr4ri | |- .1. = ( 1r ` O ) |