This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | staffval.b | |- B = ( Base ` R ) |
|
| staffval.i | |- .* = ( *r ` R ) |
||
| staffval.f | |- .xb = ( *rf ` R ) |
||
| Assertion | staffval | |- .xb = ( x e. B |-> ( .* ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | staffval.b | |- B = ( Base ` R ) |
|
| 2 | staffval.i | |- .* = ( *r ` R ) |
|
| 3 | staffval.f | |- .xb = ( *rf ` R ) |
|
| 4 | fveq2 | |- ( f = R -> ( Base ` f ) = ( Base ` R ) ) |
|
| 5 | 4 1 | eqtr4di | |- ( f = R -> ( Base ` f ) = B ) |
| 6 | fveq2 | |- ( f = R -> ( *r ` f ) = ( *r ` R ) ) |
|
| 7 | 6 2 | eqtr4di | |- ( f = R -> ( *r ` f ) = .* ) |
| 8 | 7 | fveq1d | |- ( f = R -> ( ( *r ` f ) ` x ) = ( .* ` x ) ) |
| 9 | 5 8 | mpteq12dv | |- ( f = R -> ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) ) = ( x e. B |-> ( .* ` x ) ) ) |
| 10 | df-staf | |- *rf = ( f e. _V |-> ( x e. ( Base ` f ) |-> ( ( *r ` f ) ` x ) ) ) |
|
| 11 | eqid | |- ( x e. B |-> ( .* ` x ) ) = ( x e. B |-> ( .* ` x ) ) |
|
| 12 | fvrn0 | |- ( .* ` x ) e. ( ran .* u. { (/) } ) |
|
| 13 | 12 | a1i | |- ( x e. B -> ( .* ` x ) e. ( ran .* u. { (/) } ) ) |
| 14 | 11 13 | fmpti | |- ( x e. B |-> ( .* ` x ) ) : B --> ( ran .* u. { (/) } ) |
| 15 | 1 | fvexi | |- B e. _V |
| 16 | 2 | fvexi | |- .* e. _V |
| 17 | 16 | rnex | |- ran .* e. _V |
| 18 | p0ex | |- { (/) } e. _V |
|
| 19 | 17 18 | unex | |- ( ran .* u. { (/) } ) e. _V |
| 20 | fex2 | |- ( ( ( x e. B |-> ( .* ` x ) ) : B --> ( ran .* u. { (/) } ) /\ B e. _V /\ ( ran .* u. { (/) } ) e. _V ) -> ( x e. B |-> ( .* ` x ) ) e. _V ) |
|
| 21 | 14 15 19 20 | mp3an | |- ( x e. B |-> ( .* ` x ) ) e. _V |
| 22 | 9 10 21 | fvmpt | |- ( R e. _V -> ( *rf ` R ) = ( x e. B |-> ( .* ` x ) ) ) |
| 23 | fvprc | |- ( -. R e. _V -> ( *rf ` R ) = (/) ) |
|
| 24 | mpt0 | |- ( x e. (/) |-> ( .* ` x ) ) = (/) |
|
| 25 | 23 24 | eqtr4di | |- ( -. R e. _V -> ( *rf ` R ) = ( x e. (/) |-> ( .* ` x ) ) ) |
| 26 | fvprc | |- ( -. R e. _V -> ( Base ` R ) = (/) ) |
|
| 27 | 1 26 | eqtrid | |- ( -. R e. _V -> B = (/) ) |
| 28 | 27 | mpteq1d | |- ( -. R e. _V -> ( x e. B |-> ( .* ` x ) ) = ( x e. (/) |-> ( .* ` x ) ) ) |
| 29 | 25 28 | eqtr4d | |- ( -. R e. _V -> ( *rf ` R ) = ( x e. B |-> ( .* ` x ) ) ) |
| 30 | 22 29 | pm2.61i | |- ( *rf ` R ) = ( x e. B |-> ( .* ` x ) ) |
| 31 | 3 30 | eqtri | |- .xb = ( x e. B |-> ( .* ` x ) ) |