This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An opposite ring is a ring. (Contributed by Mario Carneiro, 1-Dec-2014) (Revised by Mario Carneiro, 30-Aug-2015) (Proof shortened by AV, 30-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | opprbas.1 | |- O = ( oppR ` R ) |
|
| Assertion | opprring | |- ( R e. Ring -> O e. Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 | |- O = ( oppR ` R ) |
|
| 2 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
| 3 | 1 | opprrng | |- ( R e. Rng -> O e. Rng ) |
| 4 | 2 3 | syl | |- ( R e. Ring -> O e. Rng ) |
| 5 | oveq1 | |- ( z = ( 1r ` R ) -> ( z ( .r ` O ) x ) = ( ( 1r ` R ) ( .r ` O ) x ) ) |
|
| 6 | 5 | eqeq1d | |- ( z = ( 1r ` R ) -> ( ( z ( .r ` O ) x ) = x <-> ( ( 1r ` R ) ( .r ` O ) x ) = x ) ) |
| 7 | 6 | ovanraleqv | |- ( z = ( 1r ` R ) -> ( A. x e. ( Base ` R ) ( ( z ( .r ` O ) x ) = x /\ ( x ( .r ` O ) z ) = x ) <-> A. x e. ( Base ` R ) ( ( ( 1r ` R ) ( .r ` O ) x ) = x /\ ( x ( .r ` O ) ( 1r ` R ) ) = x ) ) ) |
| 8 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 9 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 10 | 8 9 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 11 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 12 | eqid | |- ( .r ` O ) = ( .r ` O ) |
|
| 13 | 8 11 1 12 | opprmul | |- ( ( 1r ` R ) ( .r ` O ) x ) = ( x ( .r ` R ) ( 1r ` R ) ) |
| 14 | 8 11 9 | ringridm | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 1r ` R ) ) = x ) |
| 15 | 13 14 | eqtrid | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` O ) x ) = x ) |
| 16 | 8 11 1 12 | opprmul | |- ( x ( .r ` O ) ( 1r ` R ) ) = ( ( 1r ` R ) ( .r ` R ) x ) |
| 17 | 8 11 9 | ringlidm | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
| 18 | 16 17 | eqtrid | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( x ( .r ` O ) ( 1r ` R ) ) = x ) |
| 19 | 15 18 | jca | |- ( ( R e. Ring /\ x e. ( Base ` R ) ) -> ( ( ( 1r ` R ) ( .r ` O ) x ) = x /\ ( x ( .r ` O ) ( 1r ` R ) ) = x ) ) |
| 20 | 19 | ralrimiva | |- ( R e. Ring -> A. x e. ( Base ` R ) ( ( ( 1r ` R ) ( .r ` O ) x ) = x /\ ( x ( .r ` O ) ( 1r ` R ) ) = x ) ) |
| 21 | 7 10 20 | rspcedvdw | |- ( R e. Ring -> E. z e. ( Base ` R ) A. x e. ( Base ` R ) ( ( z ( .r ` O ) x ) = x /\ ( x ( .r ` O ) z ) = x ) ) |
| 22 | 1 8 | opprbas | |- ( Base ` R ) = ( Base ` O ) |
| 23 | 22 12 | isringrng | |- ( O e. Ring <-> ( O e. Rng /\ E. z e. ( Base ` R ) A. x e. ( Base ` R ) ( ( z ( .r ` O ) x ) = x /\ ( x ( .r ` O ) z ) = x ) ) ) |
| 24 | 4 21 23 | sylanbrc | |- ( R e. Ring -> O e. Ring ) |