This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011) (Revised by Mario Carneiro, 6-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issrng.o | |- O = ( oppR ` R ) |
|
| issrng.i | |- .* = ( *rf ` R ) |
||
| Assertion | issrng | |- ( R e. *Ring <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issrng.o | |- O = ( oppR ` R ) |
|
| 2 | issrng.i | |- .* = ( *rf ` R ) |
|
| 3 | df-srng | |- *Ring = { r | [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) } |
|
| 4 | 3 | eleq2i | |- ( R e. *Ring <-> R e. { r | [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) } ) |
| 5 | rhmrcl1 | |- ( .* e. ( R RingHom O ) -> R e. Ring ) |
|
| 6 | 5 | adantr | |- ( ( .* e. ( R RingHom O ) /\ .* = `' .* ) -> R e. Ring ) |
| 7 | fvexd | |- ( r = R -> ( *rf ` r ) e. _V ) |
|
| 8 | id | |- ( i = ( *rf ` r ) -> i = ( *rf ` r ) ) |
|
| 9 | fveq2 | |- ( r = R -> ( *rf ` r ) = ( *rf ` R ) ) |
|
| 10 | 9 2 | eqtr4di | |- ( r = R -> ( *rf ` r ) = .* ) |
| 11 | 8 10 | sylan9eqr | |- ( ( r = R /\ i = ( *rf ` r ) ) -> i = .* ) |
| 12 | simpl | |- ( ( r = R /\ i = ( *rf ` r ) ) -> r = R ) |
|
| 13 | 12 | fveq2d | |- ( ( r = R /\ i = ( *rf ` r ) ) -> ( oppR ` r ) = ( oppR ` R ) ) |
| 14 | 13 1 | eqtr4di | |- ( ( r = R /\ i = ( *rf ` r ) ) -> ( oppR ` r ) = O ) |
| 15 | 12 14 | oveq12d | |- ( ( r = R /\ i = ( *rf ` r ) ) -> ( r RingHom ( oppR ` r ) ) = ( R RingHom O ) ) |
| 16 | 11 15 | eleq12d | |- ( ( r = R /\ i = ( *rf ` r ) ) -> ( i e. ( r RingHom ( oppR ` r ) ) <-> .* e. ( R RingHom O ) ) ) |
| 17 | 11 | cnveqd | |- ( ( r = R /\ i = ( *rf ` r ) ) -> `' i = `' .* ) |
| 18 | 11 17 | eqeq12d | |- ( ( r = R /\ i = ( *rf ` r ) ) -> ( i = `' i <-> .* = `' .* ) ) |
| 19 | 16 18 | anbi12d | |- ( ( r = R /\ i = ( *rf ` r ) ) -> ( ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) ) |
| 20 | 7 19 | sbcied | |- ( r = R -> ( [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) ) |
| 21 | 6 20 | elab3 | |- ( R e. { r | [. ( *rf ` r ) / i ]. ( i e. ( r RingHom ( oppR ` r ) ) /\ i = `' i ) } <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) |
| 22 | 4 21 | bitri | |- ( R e. *Ring <-> ( .* e. ( R RingHom O ) /\ .* = `' .* ) ) |